题目内容
附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.
已知的平方根为和,则______.
如图所示,学校准备修建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形的高AM=3米,∠ABC=60°.设AE=x米(1≤x≤2),矩形EFGH的面积为S米2.
(1)求S与x的函数关系式;
(2)学校准备在矩形内种植红色花草,在四个三角形内种植绿色花草.已知:红色和绿色植物的价格为200元/米2,100元/米2,当x为何值时,购买花卉所需的总费用最低,并求出最低总费用(结果保留根号).
下列计算正确的是( )
A. x6÷x2=x3 B. 2x•x=2x2 C. 3x2﹣2x3=x2 D. x2+x2=2x4
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点.
(1)求这个二次函数以及直线BC的解析式;
(2)直接写出点A的坐标;
(3)当x为何值时,一次函数的值大于二次函数的值.
分式方程=1的解为_____
从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适( )
A. 甲 B. 乙 C. 丙 D. 丁
如图,分别以正六边形相间隔的3个顶点为圆心,以这个正六边形的边长为半径作扇形得到 “三叶草”图案,若正六边形的边长为3,则“三叶草”图案中阴影部分的面积为_____(结果保留π)
如图,在平面直角坐标系中,四边形为菱形,点,的坐标分别为、,动点从点出发,以每秒个单位的速度沿向终点运动,连接并延长交于点,过点作,交于点,连接,当动点运动了秒时.
(1)点的坐标为________,点的坐标为________(用含的代数式表示);
(2)记的面积为,求与的函数关系式,并求出当取何值时,有最大值,最大值是多少?
(2)在出发的同时,有一动点从点开始在线段上以每秒个单位长度的速度向点移动,试求当为何值时,与相似.