题目内容

在一个口袋中有5个小球,这些球的形状、大小、质地等完全相同,把这5个球中的两个标号为1,其余分别标号为2,3,4,在看不到球的条件下,从袋中随机地取出一个球,不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.
分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.
解答:解:画树状图得:

∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,
∴第二次取出小球标号大于第一次取出小球标号的概率为:
9
20
点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网