题目内容

已知,点A(10,0)B(6,8),点P为线段OA上一动点(不与点A、点O重合),以PA为半径的⊙P与线段AB的另一个交点为C,作CD⊥OB于D(如图1)

(1)求证:CD是⊙P的切线;
(2)求当⊙P与OB相切时⊙P的半径;
(3)在(2)的情况下,设(2)中⊙P与OB的切点为E,连接PB交CD于点F(如图2)
①求CF的长;
②在线段DE上是否存在点G使∠GPF=45°?若存在,求出EG的长;若不存在,请说明理由.
分析:(1)如图1,连接PC,过B作BN⊥x轴于点N.欲证CD是⊙P的切线,只需证明PC⊥CD即可;
(2)如图2,过B作BN⊥x轴于点N,设圆P的半径为r.根据切线的性质知PE⊥OE,所以在Rt△OPE和Rt△OBN中,利用∠BON的正弦函数的定义列出关于r的比例式
r
10-r
=
4
5
,由此可以求得r的值;
(3)①如图3,由正方形PCDE的四条边相等知DE=DC=r,则BD=OB-OE-DE.然后将其代入相似三角形(△BDF∽△PCF)的对应边成比例的比例式
BD
PC
=
DF
CF
中,从而求得CF的值;
②假设在线段DE上是否存在点G使∠GPF=45°.如图4所示,在线段DE上截取EQ=EG.通过相似三角形:△GQP∽△BDP
,的对应边成比例求得BD=
20
9
,然后将相关线段的长度代入该比例式来求线段EG的长度.
解答:解:(1)连接PC,过B作BN⊥x轴于点N.
∵PC=PA(⊙P的半径),
∴∠1=∠2(等边对等角).
∵A(10,0),B(6,8),
∴OA=10,BN=8,ON=6,
∴在Rt△OBN中,OB=
ON2+BN2
=10(勾股定理),
∴OA=OB,
∴∠OBA=∠1(等边对等角),
∴∠OBA=∠2(等量代换),
∴PC∥OB(同位角相等,两直线平行).
∵CD⊥OB,
∴CD⊥PC,
∴CD为⊙P的切线;

(2)如图2,过B作BN⊥x轴于点N,设圆P的半径为r.
∵⊙P与OB相切于点E,则OB⊥PE,OA=10,
∴在Rt△OPE中,sin∠EOP=
PE
OP
=
r
10-r

在Rt△OBN中,sin∠BON=
BN
OB
=
8
10
=
4
5

r
10-r
=
4
5

解得:r=
40
9


(3)①如图3,∵由(2)知r=
40
9

∴在Rt△OPE中,OE=
OP2-PE2
=
(10-
40
9
)2-(
40
9
)
2
=
10
3
(勾股定理),
∵∠PCD=∠CDE=∠PED=90°,
∴四边形PCDE是矩形.
又∵PE=PC(⊙O的半径),
∴矩形PCDE是正方形,
∴DE=DC=r=
40
9

∴BD=OB-OE-DE=10-
10
3
-
40
9
=
20
9

∵∠BFD=∠PFC,∠PEO=∠PCF=90°,
∴△BDF∽△PCF,
BD
PC
=
DF
CF
,即
20
9
40
9
=
40
9
-CF
CF

解得,CF=
80
27
,即CF的长度是
80
27


②假设在线段DE上是否存在点G使∠GPF=45°.
如图4所示,在线段DE上截取EQ=EG.
∵OB⊥PE,
∴∠GQE=45°,
∴∠GQP=135°.
∵四边形PCDE是正方形,
∴PD=
2
PC=
40
2
9
,∠EPD=∠PDC=45°,
∴∠2+∠3=45°.
∵∠FPG=45°,
∴∠1+∠2=45°
∴∠1=∠3
∵∠BDP=∠BDC+∠PDC=90°+45°=135°
∴∠GQP=∠BDP
∴△GQP∽△BDP
GQ
BD
=
PQ
PD

∵OE=
10
3
,DE=
40
9
,OB=10,
∴BD=OB-ED-OE=
20
9

设EG=a,则GQ=
2
a,PQ=PE-EQ=
40
9
-a,
2
a
20
9
=
40
9
-a
40
2
9

解得,a=
8
9
,即EG的长度是
8
9
点评:本题考查了圆的综合题.解题时,注意“数学结合”数学思想的应用.在证明(3)②时,巧妙的运用了旋转的性质,切线的性质求得EG的长度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网