题目内容

精英家教网如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为
 
分析:由图可得,S2的边长为3,由AC=
2
BC,BC=CE=
2
CD,可得AC=2CD,CD=2,EC=2
2
;然后,分别算出S1、S2的面积,即可解答.
解答:解:如图,精英家教网
设正方形S1的边长为x,
∵△ABC和△CDE都为等腰直角三角形,
∴AB=BC,DE=DC,∠ABC=∠D=90°,
∴sin∠CAB=sin45°=
BC
AC
=
2
2
,即AC=
2
BC,同理可得:BC=CE=
2
CD,
∴AC=
2
BC=2CD,又AD=AC+CD=6,
∴CD=
6
3
=2,
∴EC2=22+22,即EC=2
2

∴S1的面积为EC2=2
2
×2
2
=8;
∵∠MAO=∠MOA=45°,
∴AM=MO,
∵MO=MN,
∴AM=MN,
∴M为AN的中点,
∴S2的边长为3,
∴S2的面积为3×3=9,
∴S1+S2=8+9=17.
故答案为:17.
点评:本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网