题目内容

若两个图形关于某一点成中心对称,那么下列说法.正确的是
①对称点的连线必过对称中心;
②这两个图形一定全等;
③对应线段一定平行(或在一条直线上)且相等;
④将一个图形绕对称中心旋转180°必定与另一个图形重合.


  1. A.
    ①②
  2. B.
    ①③
  3. C.
    ①②③
  4. D.
    ①②③④
D
分析:根据(1)中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.
(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,判断各选项即可得出答案.
解答:根据分析可得:①对称点的连线必过对称中心,正确;
②中心对称的两个图形一定全等,正确;
③对应线段一定平行(或在一条直线上)且相等,正确;
④根据定义可得此说法正确;
①②③④均符合题意.
故选D.
点评:本题考查中心对称的定义及性质,属于基础题,要在熟练掌握的基础上理解定义的内容及性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网