题目内容

【题目】如图,已知抛物线经过点三点.

求此抛物线的解析式;

若点是线段上的点(不与重合),过轴交抛物线于,设点的横坐标为,请用含的代数式表示的长;

的条件下,连接,是否存在点,使的面积最大?若存在,求的值;若不存在,请说明理由.

【答案】(1);(2);(3)存在时,的面积最大,最大值为

【解析】

(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.
(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.
(3)设MN交x轴于D,那么△BNC的面积可表示为:SBNC=SMNC+SMNB=MN(OD+DB)=MNOB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于SBNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值.

设抛物线的解析式为:,则:

∴抛物线的解析式:

设直线的解析式为:,则有:

解得

故直线的解析式:

已知点的横坐标为,则

∴故

如图;

∴当时,的面积最大,最大值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网