题目内容
【题目】如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于A(2,﹣1),B( ,n)两点,直线y=2与y轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.
【答案】
(1)解:把A(2,﹣1)代入反比例解析式得:﹣1= ,即m=﹣2,
∴反比例解析式为y=﹣ ,
把B( ,n)代入反比例解析式得:n=﹣4,即B( ,﹣4),
把A与B坐标代入y=kx+b中得: ,
解得:k=2,b=﹣5,
则一次函数解析式为y=2x﹣5;
(2)解:∵A(2,﹣1),B( ,﹣4),直线AB解析式为y=2x﹣5,
∵C(0,2),直线BC解析式为y=﹣12x+2,
将y=﹣1代入BC的解析式得x= ,则AD=2﹣ = .
∵xC﹣xB=2﹣(﹣4)=6,
∴S△ABC= ×AD×(yC﹣yB)= × ×6= .
【解析】(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)利用两点间的距离公式求出AB的长,利用点到直线的距离公式求出点C到直线AB的距离,即可确定出三角形ABC面积.
【题目】如图,广宇购物中心设立了一个可以自由转动的转盘,并规定:顾客购物满20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.
转动转盘的次数n | 100 | 200 | 400 | 500 | 1000 |
落在“牙膏”区域的次数m | 32 | 58 | 121 | 149 | 300 |
落在“牙膏”区域的频率 | 0.3025 |
(1)计算并完成上面的表格;
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得牙膏的概率是多少?