题目内容
如图,在△ABC中,AB=10,AC=8,则BC边上的中线AD的取值范围是( )
A. 8<AD<10 B. 2<AD<18 C. 1<AD<9 D. 无法确定
如图,已知二次函数的图象经过点,与轴分别交于点,点.点是直线上方的抛物线上一动点.
(1)求二次函数的表达式;
(2)连接,,并把沿轴翻折,得到四边形.若四边形为菱形,请求出此时点的坐标;
(3)当点运动到什么位置时,四边形的面积最大?求出此时点的坐标和四边形的最大面积.
若方程有增根,则a=________.
在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求证:△ABP≌△ACQ;
(2)请判断△APQ是什么三角形,试说明你的结论.
如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中阴影部分的面积S是
已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为( )
A. 3:2 B. 9:4 C. 2:3 D. 4:9
如图1,Rt△ABC和Rt△DBE中,∠ABC=∠EBD=90°,AB=BC,DB=EB.显然可得结论AD=EC,AD⊥EC.
(1)阅读:当Rt△DBE绕点B逆时针旋转到图2的位置时,连接AD,CE.求证:AD=EC,AD⊥EC.
下面给出了小亮的证明过程,请你把小亮的证明过程填写完整:
∵∠ABC=∠EBD,∴∠ABC-∠ABE=∠EBD-∠ABE,即∠EBC=∠DBA.在△EBC和△DBA中,
BC=BA,∠______=∠______,BE=BD,
∴△EBC≌△DBA,∴CE=AD,∠ECB=∠______.
∵∠ECB+∠ACE+∠CAB=90°,∴∠DAB+∠ACE+∠CAB=90°,∴∠______=90°,∴AD⊥EC.
(2)类比:当Rt△DBE绕点B逆时针旋转90°得到图3时,连接AD,CE.问(1)中线段AD,EC间的数量关系和位置关系还成立吗?若成立,请给出证明;若不成立,请说明理由;
(3)拓展:当Rt△DBE绕点B逆时针旋转到图4时,连接AD,CE.请说明AD,EC间的数量关系和位置关系.
已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )
A. B.
C. D.
如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为________.