题目内容
某物体的三视图如图所示,则该物体的形状是( )
A. 正方体 B. 长方体 C. 圆柱体 D. 球体
如图,在矩形ABCD中,已知AB=2,BC=3,点E,F,G,H分别在矩形的四条边上,EF与GH交于点O,连结HE,GF.
(1)如图1,若HE∥GF,求证:△AEH∽△CFG;
(2)当点E,G分别与点A,B重合时,如图2所示,若点F是CD的中点,且∠AHB=∠AFB,求AH+BH的值;
(3)当GH⊥EF,HE∥FG时,如图3所示,若FO:OE=3:2,且阴影部分的面积等于,求EF,HG的长.
方程x2﹣2x=3可以化简为( )
A. (x﹣3)(x+1)=0 B. (x+3)(x﹣1)=0 C. (x﹣1)2=2 D. (x﹣1)2+4=0
先化简:,再选择一个恰当的x值代入并求值.
如图,在平面直角坐标系中,直线与x轴、y轴分别交于点A、B,与函数(k>0,x>0)的图象交于点M,MN⊥AM,交x轴于点N.若点N的坐标为(3,0),则k的值为( )
A. 1 B. C. 2 D. 3
如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,DC与AB相交于点E.
(1)求证:DB=DE;
(2)若∠BDE=70°,求∠AOB的大小.
一数学兴趣小组来到某公园,测量一座塔的高度.如图,在 A 处测得塔顶的仰角为α=31°,在 B 处测得塔顶的仰角为β=45°,又测量出 A、B 两点的距离为20米,则塔高为_____米.(参考数值:tan31°≈)
抛物线y=ax2+bx+c的对称轴为直线x=1,该抛物线与x轴的两个交点分别为A和B,与y轴的交点为C,其中A(﹣1,0).
(1)写出B点的坐标_____;
(2)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;
(3)点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.
如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点,若∠MPN=130°,则∠NMP的度数为( )
A. 10° B. 15° C. 25° D. 40°