题目内容
【题目】如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠2.求证:四边形ABCD是矩形.
【答案】证明:在ABCD中,AO=CO,BO=DO, ∵∠1=∠2,
∴BO=CO,
∴AO=BO=CO=DO,
∴AC=BD,
∴ABCD为矩形
【解析】根据等角对等边得出OB=OC,根据平行四边形性质求出OC=OA= AC,OB=OD= BD,推出AC=BD,根据矩形的判定推出即可.
【考点精析】通过灵活运用平行四边形的性质和矩形的判定方法,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形即可以解答此题.
练习册系列答案
相关题目