题目内容

精英家教网已知如图,AB是⊙O的直径,BC⊥AB于B,D是⊙O上的一点,且AD∥OC.
(1)求证:△ADB∽△OBC;
(2)若AO=2,BC=2
2
,求AD的长.
分析:(1)根据平行线的性质得∠A=∠COB,根据直径所对的圆周角是直角得∠D=∠OBC,就可以判定△ADB∽△OBC;
(2)根据相似三角形的对应边成比例可以计算出OC的长.
解答:解:(1)∵AD∥OC,∴∠A=∠COB.
AB是直径,∴∠D=∠OBC=90°,∴△ADB∽△OBC.

(2)∵AO=2,BC=2
2

∴OC=2
3

又∵△ADB∽△OBC,
AD
OB
=
AB
OC
,即
AD
2
=
4
2
3
,OC=2
3

∴AD=
4
3
3
点评:本题难度中等,考查相似三角形的判定和性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网