题目内容
【题目】如图,在平面直角坐标系中,已知三个顶点的坐标分别是.
(1)请在图中,画出绕着点逆时针旋转后得到的,则的正切值为 .
(2)以点为位似中心,将缩小为原来的,得到,请在图中轴左侧,画出,若点是上的任意一点,则变换后的对应点的坐标是 .
【答案】(1)图详见解析,;(2)图详见解析,变换后的对应点的坐标是.
【解析】
1)依据旋转的方向、角度和旋转中心,即可得到△ABC绕着点O逆时针旋转90°后得到的△A1B1C1,进而得到∠A1C1B1的正切值;.
(2)依据点O为位似中心,将△ABC缩小为原来的,即可得到△A2B2C2,以及变换后的对应点P′的坐标.
(1)如图所示,即为所求;由题可得,;
(2)如图所示,即为所求,
∵点是上的任意一点,点为位似中心,
∴变换后的对应点的坐标是.
练习册系列答案
相关题目
【题目】某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别 | A | B | C | D | E |
节目类型 | 新闻 | 体育 | 动画 | 娱乐 | 戏曲 |
人数 | 12 | 30 | m | 54 | 9 |
请你根据以上的信息,回答下列问题:
(1)被调查的学生中,最喜爱体育节目的有 人,这些学生数占被调查总人数的百分比为 %.
(2)被调查学生的总数为 人,统计表中m的值为 ,统计图中n的值为 .
(3)在统计图中,E类所对应扇形圆心角的度数为 .
(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.