题目内容
如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=8,则⊿PDE的周长为____________.
世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是
A、7.6×108克 B、7.6×10-7克
C、7.6×10-8克 D、7.6×10-9克
已知矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=2cm,则该矩形的面积为_____.
如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=4.
(1)求证:AC是⊙O的切线;
(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)
如图,⊙O是以原点为圆心, 为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为______.
如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,NH=c,则a、b、c的大小是_________.
如图1,二次函数y=-x2+bx+c的图象过点A(3,0),B(0,4)两点,点P从A出发,在线段AB上沿A→B的方向以每秒2个单位长度的速度运动,过点P作PD⊥y轴于点D,交抛物线于点C.设运动时间为t(秒)
图1 图2
(1)求二次函数y=-x2+bx+c的表达式;
(2)连接BC,当t=时,求△BCP的面积;
(3)如图2,动点P从A出发时,动点Q同时从O出发,在线段OA上沿O→A的方向以每秒1个单位长度的速度运动,当点P与B重合时,P、Q两点同时停止运动.连接DQ,PQ,将△DPQ沿直线PC折叠得到△DPE.在运动过程中,设△DPE和△OAB重合部分的面积为S,直接写出S与t的函数关系式及t的取值范围.
如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG
以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止
运动.设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大
致图象为( )
A. B. C. D.
如图,某小区计划在一块长为32 m,宽为20 m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m 2.若设道路的宽为x m,则下面所列方程正确的是( )
A. (32–2x)(20–x)=570 B. 32x+2×20x=32×20–570
C. (32–x)(20–x)=32×20–570 D. 32x+2×20x–2x2=570