题目内容
【题目】如图,Rt△ABC的斜边AB在x轴上,AB=4,点A的坐标为(-1,0),点C在y轴的正半轴。若抛物线y=ax2+bx+c (a≠0)的图像经过点A,B,C,则抛物线的表达式为__________;若以动直线l:y=-x+m为对称轴,线段BC关于直线l的对称线段BC与二次函数图像有交点,则m的取值范围是__________.
【答案】 y= (x+1)(x-3) ≤m≤或≤m≤
【解析】(1)先求出OB=3,吧(3,0),再证明Rt△OCB∽△RtOAC,则可利用相似比计算出OC=,得到(0, ),然后利用待定系数法,运用交点式求出抛物线解析式.
解:(1)∵AB=4,点Bd的坐标为(-1,0),
∴OB=3,B(3,0),
∵∠BCO+∠CBO=90°,∠CBA+∠CAO=90°,
∴∠BCO=∠CAO,
∴Rt△OCB∽Rt△OAC,
∴OC:OA=OB:OC,即OC:3+1:OC,
∴OC=,
∴C(0, ),
设抛物线解析式为y=a(x+1)(x-3),
把C(0, )代入得-3a=,解得a=-,
所以抛物线解析式为:y=-(x+1)(x-3),即y=-x2+x+.
(2). 当线段BC关于直线l的对称线段BC与二次函数图像有交点时,m的取值范围是≤m≤或≤m≤
“点精”本题考查了二次函数的综合题:熟练掌握二次函数的性质,会利用待定系数法求抛物线解析式;灵活运用系数三角形的判定与性质;利用两点间线段最短路径问题;能应用分类讨论的思想解决数学问题.
【题目】我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:
西瓜种类 | A | B | C |
每辆汽车运载量(吨) | 4 | 5 | 6 |
每吨西瓜获利(百元) | 16 | 10 | 12 |
(1)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,求y与x的函数关系式;
(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要是此次销售获利达到预期利润25万元,应采取怎样的车辆安排方案?
【题目】(阅读下面材料,解答后面问题:
在数学课上,老师提出如下问题: |
小敏的作法如下:
①作线段AC的垂直平分线交AC于点O;②连接BO并延长,在延长线上截取OD=BO;③连接DA,DC.则四边形ABCD即为所求. |
判断小敏的作法是否正确?若正确,请证明;若不正确,请说明理由.