ÌâÄ¿ÄÚÈÝ
Èçͼ£¨1£©Ëùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¶þ´Îº¯Êýy=ax2+bx+c£¨a£¾0£©µÄͼÏóµÄ¶¥µãΪDµã£¬ÓëxÖá½»ÓÚA¡¢BÁ½µã£¬µãAÔÚÔµãµÄ×ó²à£¬µãBµÄ×ø±êΪ£¨3£¬0£©£¬ÓëyÖá½»ÓÚµãC£¬ÇÒOB=OC£¬ÓÖtan¡ÏACO=
£®
¢ÙÇóÕâ¸öº¯ÊýµÄ±í´ïʽ£®
¢Ú¾¹ýC£®DÁ½µãµÄÖ±ÏßÓëxÖá½»ÓÚµãE£¬ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãF£¬Ê¹ÒÔµãA¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇóµãFµÄ×ø±ê£®
¢ÛÈçͼ£¨2£©Ëùʾ£¬ÈôG£¨2£¬t£©ÊǸÃÅ×ÎïÏßÉÏÒ»µã£¬µãPÊÇÖ±ÏßAGÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¬µ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬¡÷APGµÄÃæ»ý×î´ó£¿Çó´ËʱPµãµÄ×ø±êºÍ¡÷APGµÄ×î´óÃæ»ý£®
1 | 3 |
¢ÙÇóÕâ¸öº¯ÊýµÄ±í´ïʽ£®
¢Ú¾¹ýC£®DÁ½µãµÄÖ±ÏßÓëxÖá½»ÓÚµãE£¬ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãF£¬Ê¹ÒÔµãA¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇóµãFµÄ×ø±ê£®
¢ÛÈçͼ£¨2£©Ëùʾ£¬ÈôG£¨2£¬t£©ÊǸÃÅ×ÎïÏßÉÏÒ»µã£¬µãPÊÇÖ±ÏßAGÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¬µ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬¡÷APGµÄÃæ»ý×î´ó£¿Çó´ËʱPµãµÄ×ø±êºÍ¡÷APGµÄ×î´óÃæ»ý£®
·ÖÎö£º£¨1£©¸ù¾ÝÒÑÖªÌõ¼þ£¬Ò×ÇóµÃC¡¢AµÄ×ø±ê£¬¿ÉÓôý¶¨ÏµÊý·¨Çó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¸ù¾ÝÒÔµãA¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬ÓÉƽÐÐËıßÐεÄÐÔÖÊÒÔ¼°¶þ´Îº¯ÊýµÄÐÔÖʵóöAE=CF£¬AE¡ÎCF¼´¿ÉµÃ³ö´ð°¸£®
£¨3£©Ò×ÇóµÃACµÄ³¤£¬ÓÉÓÚAC³¤Îª¶¨Öµ£¬µ±Pµ½Ö±ÏßAGµÄ¾àÀë×î´óʱ£¬¡÷APGµÄÃæ»ý×î´ó£®¿É¹ýP×÷yÖáµÄƽÐÐÏߣ¬½»AGÓÚQ£»Éè³öPµã×ø±ê£¬¸ù¾ÝÖ±ÏßAGµÄ½âÎöʽ¿ÉÇó³öQµã×ø±ê£¬Ò²¾ÍÇó³öPQµÄ³¤£¬½ø¶ø¿ÉµÃ³ö¹ØÓÚ¡÷APGµÄÃæ»ýÓëPµã×ø±êµÄº¯Êý¹Øϵʽ£¬¸ù¾Ýº¯ÊýµÄÐÔÖÊ¿ÉÇó³ö¡÷APGµÄ×î´óÃæ»ý¼°PµãµÄ×ø±ê£¬¸ù¾Ý´Ëʱ¡÷APGµÄÃæ»ýºÍAGµÄ³¤£¬¼´¿ÉÇó³öPµ½Ö±ÏßACµÄ×î´ó¾àÀ룮
£¨2£©¸ù¾ÝÒÔµãA¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬ÓÉƽÐÐËıßÐεÄÐÔÖÊÒÔ¼°¶þ´Îº¯ÊýµÄÐÔÖʵóöAE=CF£¬AE¡ÎCF¼´¿ÉµÃ³ö´ð°¸£®
£¨3£©Ò×ÇóµÃACµÄ³¤£¬ÓÉÓÚAC³¤Îª¶¨Öµ£¬µ±Pµ½Ö±ÏßAGµÄ¾àÀë×î´óʱ£¬¡÷APGµÄÃæ»ý×î´ó£®¿É¹ýP×÷yÖáµÄƽÐÐÏߣ¬½»AGÓÚQ£»Éè³öPµã×ø±ê£¬¸ù¾ÝÖ±ÏßAGµÄ½âÎöʽ¿ÉÇó³öQµã×ø±ê£¬Ò²¾ÍÇó³öPQµÄ³¤£¬½ø¶ø¿ÉµÃ³ö¹ØÓÚ¡÷APGµÄÃæ»ýÓëPµã×ø±êµÄº¯Êý¹Øϵʽ£¬¸ù¾Ýº¯ÊýµÄÐÔÖÊ¿ÉÇó³ö¡÷APGµÄ×î´óÃæ»ý¼°PµãµÄ×ø±ê£¬¸ù¾Ý´Ëʱ¡÷APGµÄÃæ»ýºÍAGµÄ³¤£¬¼´¿ÉÇó³öPµ½Ö±ÏßACµÄ×î´ó¾àÀ룮
½â´ð£º½â£º£¨1£©·½·¨Ò»£º¡ßµãBµÄ×ø±êΪ£¨3£¬0£©£¬ÓëyÖá½»ÓÚµãC£¬ÇÒOB=OC£¬ÓÖtan¡ÏACO=
£®
¡àtan¡ÏACO=
=
£¬
¡àAO=1£¬
¡àC£¨0£¬-3£©£¬A£¨-1£¬0£©£¬
½«A¡¢B¡¢CÈýµãµÄ×ø±ê´úÈëµÃ
£¬
½âµÃ£º
£¬
ËùÒÔÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽΪ£ºy=x2-2x-3
·½·¨¶þ£ºÓÉÒÑÖªµÃ£ºC£¨0£¬-3£©£¬A£¨-1£¬0£©£¬
Éè¸Ã±í´ïʽΪ£ºy=a£¨x+1£©£¨x-3£©£¬
½«CµãµÄ×ø±ê´úÈëµÃ£ºa=1£¬
ËùÒÔÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽΪ£ºy=x2-2x-3£»
£¨×¢£º±í´ïʽµÄ×îÖÕ½á¹ûÓÃÈýÖÖÐÎʽÖеÄÈÎÒ»ÖÖ¶¼²»¿Û·Ö£©
£¨2£©Èçͼ£¬ÔÚy=x2-2x-3ÖУ¬Áîx=0£¬µÃy=-3£®
Áîy=0£¬µÃx2-2x-3=0£¬¡àx1=-1£¬x2=3£®
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬-3£©£®
ÓÖy=£¨x-1£©2-4£¬¡à¶¥µãD£¨1£¬-4£©£®
ÈÝÒ×ÇóµÃÖ±ÏßCDµÄ±í´ïʽÊÇy=-x-3£®
ÔÚy=-x-3ÖУ¬Áîy=0£¬µÃx=-3£®
¡àE£¨-3£¬0£©£¬
¡àAE=2£®
ÔÚy=x2-2x-3ÖУ¬Áîy=-3£¬µÃx1=0£¬x2=2£¬
¡àCF=2£¬
¡àAE=CF£®
¡ßAE¡ÎCF£¬
¡àËıßÐÎAECFΪƽÐÐËıßÐΣ¬´ËʱF£¨2£¬-3£©£®
£¨3£©¹ýµãP×÷yÖáµÄƽÐÐÏßÓëAG½»ÓÚµãQ£¬
Ò×µÃG£¨2£¬-3£©£¬Ö±ÏßAGΪy=-x-1£»
ÉèP£¨x£¬x2-2x-3£©£¬ÔòQ£¨x£¬-x-1£©£¬PQ=-x2+x+2£»
S¡÷APG=S¡÷APQ+S¡÷GPQ=
(-x2+x+2)¡Á3=-
(x-
)2+
£¬
µ±x=
ʱ£¬¡÷APGµÄÃæ»ý×î´óΪ
£»
¡ßAG=3
£¬Pµ½AGµÄ×î´ó¾àÀëΪ
=
=
£¬
´ËʱPµãµÄ×ø±êΪ(
£¬-
)£®
1 |
3 |
¡àtan¡ÏACO=
AO |
CO |
1 |
3 |
¡àAO=1£¬
¡àC£¨0£¬-3£©£¬A£¨-1£¬0£©£¬
½«A¡¢B¡¢CÈýµãµÄ×ø±ê´úÈëµÃ
|
½âµÃ£º
|
ËùÒÔÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽΪ£ºy=x2-2x-3
·½·¨¶þ£ºÓÉÒÑÖªµÃ£ºC£¨0£¬-3£©£¬A£¨-1£¬0£©£¬
Éè¸Ã±í´ïʽΪ£ºy=a£¨x+1£©£¨x-3£©£¬
½«CµãµÄ×ø±ê´úÈëµÃ£ºa=1£¬
ËùÒÔÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽΪ£ºy=x2-2x-3£»
£¨×¢£º±í´ïʽµÄ×îÖÕ½á¹ûÓÃÈýÖÖÐÎʽÖеÄÈÎÒ»ÖÖ¶¼²»¿Û·Ö£©
£¨2£©Èçͼ£¬ÔÚy=x2-2x-3ÖУ¬Áîx=0£¬µÃy=-3£®
Áîy=0£¬µÃx2-2x-3=0£¬¡àx1=-1£¬x2=3£®
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬-3£©£®
ÓÖy=£¨x-1£©2-4£¬¡à¶¥µãD£¨1£¬-4£©£®
ÈÝÒ×ÇóµÃÖ±ÏßCDµÄ±í´ïʽÊÇy=-x-3£®
ÔÚy=-x-3ÖУ¬Áîy=0£¬µÃx=-3£®
¡àE£¨-3£¬0£©£¬
¡àAE=2£®
ÔÚy=x2-2x-3ÖУ¬Áîy=-3£¬µÃx1=0£¬x2=2£¬
¡àCF=2£¬
¡àAE=CF£®
¡ßAE¡ÎCF£¬
¡àËıßÐÎAECFΪƽÐÐËıßÐΣ¬´ËʱF£¨2£¬-3£©£®
£¨3£©¹ýµãP×÷yÖáµÄƽÐÐÏßÓëAG½»ÓÚµãQ£¬
Ò×µÃG£¨2£¬-3£©£¬Ö±ÏßAGΪy=-x-1£»
ÉèP£¨x£¬x2-2x-3£©£¬ÔòQ£¨x£¬-x-1£©£¬PQ=-x2+x+2£»
S¡÷APG=S¡÷APQ+S¡÷GPQ=
1 |
2 |
3 |
2 |
1 |
2 |
27 |
8 |
µ±x=
1 |
2 |
27 |
8 |
¡ßAG=3
2 |
2S¡÷APG |
AG |
2¡Á
| ||
3
|
9 |
8 |
2 |
´ËʱPµãµÄ×ø±êΪ(
1 |
2 |
15 |
4 |
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢Æ½ÐÐËıßÐεÄÅж¨¡¢Í¼ÐÎÃæ»ýµÄÇ󷨵È֪ʶ£¬×ÛºÏÐÔÇ¿£¬ÄÜÁ¦ÒªÇó½Ï¸ß£®¿¼²éѧÉúÊýÐνáºÏµÄÊýѧ˼Ïë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿