题目内容
【题目】因式分解:m2﹣4mn+4n2= .
【答案】(m﹣2n)2【解析】解:m2﹣4mn+4n2=(m﹣2n)2 . 所以答案是:(m﹣2n)2 .
【题目】下列各数中,最小的数是( )A.﹣4B.3C.0D.﹣2
【题目】在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).
(1)试说明如何平移线段AC,使其与线段ED重合;
(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;
(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°.画出旋转后的图形.
【题目】下列运算正确的是( )A.x3+x3=2x6B.x3+x3=x3C.(xy2)3=x3y6D.(x+y)(y﹣x)=x2﹣y2
【题目】如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,求线段EF的长.
【题目】已知一个单项式的系数是 2,次数是 3,则这个单项式可以是( )
A.-2xyB.3xC.2yD.2xy
【题目】如图,在四边形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t为多少秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
【题目】如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).
(1)求抛物线m的解析式;
(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;
(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.
【题目】先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2 , 其中a=2,b=﹣1.