题目内容
【题目】如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.
(1)求m、n的值;
(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;
(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)m=1,n=﹣9;(2);(3)存在,P点坐标为(,0)或(,0).
【解析】
(1)利用抛物线的解析式确定对称轴为直线x=2,再利用对称性得到2﹣(m﹣2)=2m+3﹣2,解方程可得m的值,从而得到A(﹣1,0),B(5,0),然后把A点坐标代入y=﹣[(x﹣2)2+n]可求出n的值;
(2)作ND∥y轴交BC于D,如图2,利用抛物线解析式确定C(0,3),再利用待定系数法求出直线BC的解析式为y=﹣x+3,设N(x,﹣x2+x+3),则D(x,﹣x+3),根据三角形面积公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=﹣x2+x,然后利用二次函数的性质求解;
(3)先利用勾股定理计算出BC=,再分类讨论:当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BOC,利用相似比可求出BP的长,再计算OP后可得到P点坐标;当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BCO,利用相似比可求出BP的长,再计算OP后可得到P点坐标.
解:(1)∵抛物线的解析式为y=﹣[(x﹣2)2+n]=﹣(x﹣2)2﹣n,
∴抛物线的对称轴为直线x=2,
∵点A和点B为对称点,
∴2﹣(m﹣2)=2m+3﹣2,解得m=1,
∴A(﹣1,0),B(5,0),
把A(﹣1,0)代入y=﹣[(x﹣2)2+n]得9+n=0,解得n=﹣9;
(2)作ND∥y轴交BC于D,如图2,
抛物线解析式为y=﹣[(x﹣2)2﹣9]=﹣x2+x+3,
当x=0时,y=3,则C(0,3),
设直线BC的解析式为y=kx+b,
把B(5,0),C(0,3)代入得,解得,
∴直线BC的解析式为y=﹣x+3,
设N(x,﹣x2+x+3),则D(x,﹣x+3),
∴ND=﹣x2+x+3﹣(﹣x+3)=﹣x2+3x,
∴S△NBC=S△NDC+S△NDB=5ND=﹣x2+x=﹣(x﹣)2+,
当x=时,△NBC面积最大,最大值为;
(3)存在.
∵B(5,0),C(0,3),/p>
∴由勾股定理得BC=,
当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,
设PM=t,则CM=t,MB=﹣t,
∵∠MBP=∠OBC,
∴△BMP∽△BOC,
∴,即,解得t=,BP=,
∴OP=OB﹣BP=5﹣,
此时P点坐标为(,0);
当∠MPB=90°,则MP=MC,
设PM=t,则CM=t,MB=﹣t,
∵∠MBP=∠CBO,
∴△BMP∽△BCO,
∴,即,解得t=,BP=,
∴OP=OB﹣BP=5﹣,
此时P点坐标为(,0);
综上所述,P点坐标为(,0)或(,0).
【题目】学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.
学生借阅图书的次数:
借阅图书的次数 | 0次 | 1次 | 2次 | 3次 | 4次以上 |
人数 | 7 | 13 | 10 | 3 |
请你根据统计图表中的信息,解答下列问题:
(1)____________,____________;
(2)该调查统计数据的中位数是___________次;
(3)扇形统计图中,“3次”所对应扇形的圆心角的度数是____________;
(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.