题目内容
【题目】为测量大楼的高度,从距离大楼底部30米处的,有一条陡坡公路,车辆从沿坡度,坡面长13米的斜坡到达后,观测到大楼的顶端的仰角为30°,则大楼的高度为( )米.
(精确到0.1米,,)
A.26.0B.29.2C.31.1D.32.2
【答案】B
【解析】
过点D作DF⊥AB与点F,过点C作CE⊥DF与点E,通过解直角三角形可求出CE、DE、AF的长,再由AB=AF+BF即可求出结论.
解:过点D作DF⊥AB与点F,过点C作CE⊥DF与点E,如图所示.
∵CD的坡度i=1:2.4,CD=13,
∴设CE=x,则DE=2.4x,
∴CD=x=13,
∴x=5,
∴CE=5米,DE=12米.
在Rt△ADF中,∠ADF=30°,DF=DE+EF=42,
∴AF=DFtan∠ADF≈24.2米,
∴AB=AF+BF=29.2米.
故选:B.
练习册系列答案
相关题目
【题目】参照学习函数的过程与方法,探究函数的图象与性质列表:
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示:
(1)请补全函数图象:
(2)观察图象并分析表格,回答下列问题:
①当时,y随x的增大而_________;(填“增大”或“减小”)
②图象关于点__________中心对称.(填点的坐标)
③当时,的最小值是_________.
(3)结合函数图象,当时,求x的取值范围.