题目内容
【题目】如图,已知在Rt△ABC中,∠ACB=90°,cosB=,BC=3,P是射线AB上的一个动点,以P为圆心,PA为半径的⊙P与射线AC的另一个交点为D,直线PD交直线BC于点E.
(1)当PA=1时,求CE的长;
(2)如果点P在边AB的上,当⊙P与以点C为圆心,CE为半径的⊙C内切时,求⊙P的半径;
(3)设线段BE的中点为Q,射线PQ与⊙P相交于点F,点P在运动过程中,当PE∥CF时,求AP的长.
【答案】(1);(2);(3)或.
【解析】试题分析:(1)作PH⊥AC,垂足为H,由垂径定理可得AH=DH,由cosB= BC=3,可得AB=5,AC=4,再由PH∥BC,可得,代入数据求得PH= ,即可求得,由,代入数据求得CE的长即可;(2)当⊙P与⊙C内切时,点C在⊙P内,可得点D在AC的延长线上,过点P作PG⊥AC,垂足为G,设PA=,则,,,,根据,代入数据可得,解得,因⊙P与⊙C内切,即可得,所以,即,解得,(舍去),即当⊙P与⊙C内切时,⊙P的半径为;(3)先证明四边形PDCF是平行四边形,可得PF=CD,再分当点P在边AB的上和当点P在边AB的延长线上两种情况求AP的长.
试题解析:
(1)作PH⊥AC,垂足为H,∵PH过圆心,∴AH=DH
∵∠ACB=90°,∴PH∥BC, ∵cosB=,BC=3,∴AB=5,AC=4
∵PH∥BC,∴,∴,∴
∴
∴DC=,又∵,∴,∴
(2)当⊙P与⊙C内切时,点C在⊙P内,∴点D在AC的延长线上
过点P作PG⊥AC,垂足为G,设PA=,则,
,,∵,,…(1分)
∵⊙P与⊙C内切,∴
∴
∴,∴,(舍去)
∴当⊙P与⊙C内切时,⊙P的半径为.
(3)∵∠ABC+∠A=90゜,∠PEC+∠CDE=90゜,∠A=∠PDA,
∴∠ABC=∠PEC
∵∠ABC=∠EBP,
∴∠PEC=∠EBP,
∴PB=PE
∵点Q为线段BE的中点,
∴PQ⊥BC,∴PQ∥AC
∴当PE∥CF时,四边形PDCF是平行四边形,∴PF=CD
当点P在边AB的上时,,
当点P在边AB的延长线上时,,
综上所述,当PE∥CF时,AP的长为或.
【题目】下列表格是二次函数y=ax2+bx+c(d≠0)的自变量x与函数y的一些对应值,由此可以判断方程ax2+bx+c=0(a≠0)的一个根在( )
x | 6.17 | 6.18 | 6.19 | 6.20 |
y=ax2+bx+c | ﹣0.03 | ﹣0.01 | 0.02 | 0.06 |
A.﹣0.01﹣0.02之间
B.0.02﹣0.06之间
C.6.17﹣6.18之间
D.6.18﹣6.19之间