题目内容
两人骑自行车绕800m圆形跑道行驶,他们从同一地点出发,如果方向相反,每80s相遇一次,如果方向相同,每200s相遇一次,假设二人速度不等,求各人速度.
解:设较快的速度是xm/s,较慢的速度为ym/s.
根据题意得:
解得:
答:骑的较快的速度为7m/s,较慢的速度为3m/s.
分析:本题属相遇问题和追及问题.等量关系为:
相遇:骑车快的速度×时间+骑车慢的速度×时间=800.
追及:骑车快的速度×时间-骑车慢的速度×时间=800.
点评:在环形跑道上,若两人同时同地出发到第一次相遇,反向时,两人路程之和为一圈路程,同向时快者与慢者路程之差为一圈路程.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
根据题意得:
解得:
答:骑的较快的速度为7m/s,较慢的速度为3m/s.
分析:本题属相遇问题和追及问题.等量关系为:
相遇:骑车快的速度×时间+骑车慢的速度×时间=800.
追及:骑车快的速度×时间-骑车慢的速度×时间=800.
点评:在环形跑道上,若两人同时同地出发到第一次相遇,反向时,两人路程之和为一圈路程,同向时快者与慢者路程之差为一圈路程.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
练习册系列答案
相关题目