题目内容

(2013•邓州市一模)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN=
3cm
3cm
,AM=
1cm
1cm
分析:分两步求解:
(1)在Rt△ECN中,利用勾股定理与折叠性质,求出CN的长度;
(2)过点M作MG⊥CD于点C,证明△MNG≌△DEC,得到GN=CE,从而求出DG,即AM的长度.
解答:解:设CN=xcm,则DN=(8-x)cm.
由折叠可知,EN=DN=(8-x)cm.
在Rt△ECN中,CE=4cm,CN=xcm,EN=(8-x)cm,
由勾股定理得:EN2=CN2+CE2,即(8-x)2=x2+42
解得:x=3,
∴CN=3cm;
如图,过点M作MG⊥CD于点G,则由题意可知AM=DG,MG=BC=CD.
连接DE,交MG于点I.
由折叠可知,DE⊥MN,∴∠NMG+MIE=90°,
∵∠DIG+∠EDC=90°,∠MIE=∠DIG(对顶角相等),
∴∠NMG=∠EDC.
在△MNG与△DEC中,
∠NMG=∠EDC
MG=CD
∠MGN=∠DCE=90°

∴△MNG≌△DEC(ASA).
∴GN=CE=4cm,
∴DG=CD-CN-GN=8-3-4=1cm.
∴AM=DG=1cm.
故答案为:3cm和1cm.
点评:考查了翻折问题,翻折问题关键是找准对应重合的量,哪些边、角是相等的.本题中DN=EN是解题关键,再利用勾股定理、全等三角形的知识就迎刃而解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网