题目内容
计算化简:
+
+
.
| x |
| x2+3x+2 |
| x |
| x2+x-2 |
| 2 |
| 1-x2 |
分析:首先把各分式分母分解因式,再通分,然后进行分式的加减运算.
解答:解:原式=
+
+
=
+
-
=
=
=
=
.
| x |
| (x+2)(x+1) |
| x |
| (x+2)(x-1) |
| 2 |
| (1+x)(1-x) |
=
| x(x-1) |
| (x+2)(x+1)(x-1) |
| x(x+1) |
| (x+2)(x+1)(x-1) |
| 2(x+2) |
| (x+2)(x+1)(x-1) |
=
| x2-x +x2+x-2x-4 |
| (x+2)(x2-1) |
=
| 2x2-2x-4 |
| (x+2)(x+1)(x-1) |
=
| 2(x-2)(x+1) |
| (x+2)(x+1)(x-1) |
=
| 2x-4 |
| x2+x-2 |
点评:此题考查的知识点是粉饰的加减法,关键如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.
练习册系列答案
相关题目