题目内容
直线与直线的位置关系是( )
A.平行 B.垂直 C.相交但不垂直 D.重合
若关于的不等式有实数解,则实数的取值范围为
A.
B.
C.
D.
公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的:“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为__________.(参考数据:
为了解某市居民日常用水量的标准,某机构通过抽样获得了100位居民某年的月均用水量(单位:吨),下表是这100位居民月均用水量的频率分布表,根据下表解答下列问题:
(1)求下表中和的值;
(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的中位数(精确到0.01).
已知一个几何体的三视图如图所示,其中正视图和侧视图都是底边长为6,腰长为10的等腰三角形,俯视图是半径为3的圆,则这个几何体的表面积是( )
A. B. C. D.
在数列中,,当n≥2时,成等比数列.
(1)求,并推出的表达式;
(2)用数学归纳法证明所得的结论.
将4个不同的小球任意放入3个不同的盒子中,则每个盒子中至少有1个小球的概率为________.
设点是区域内的任意一点,则的取值范围是 .
如图,在平面直角坐标系中, 已知圆,椭圆, 为椭圆右顶点.过原点且异于坐标轴的直线与椭圆交于两点,直线与圆的另一交点为,直线与圆的另一交点为,其中.设直线的斜率分别为.
(1)求的值;
(2)记直线的斜率分别为,是否存在常数,使得?若存在,求值;若不存在,说明理由;
(3)求证:直线必过点.