题目内容
已知实数满足 则的取值范围是 .
有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.
已知向量a,b,|a| =1,|b|=2,若对任意单位向量e,均有 |a·e|+|b·e| ,则a·b的最大值是 .
[选修4-5:不等式选讲]设a>0,|x1|< ,|y2|< ,求证:|2x+y4|<a.
现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.
(1)若则仓库的容积是多少?
(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?
将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .
设函数,,其中.
(Ⅰ)求的单调区间;
(Ⅱ)若存在极值点,且,其中,求证:;
(Ⅲ)设,函数,求证:在区间上的最大值不小于.
将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为
某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为 .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是
(A)56 (B)60 (C)120 (D)140