题目内容

17.已知函数f(x)=|lnx-$\frac{1}{2}$|,若a≠b,f(a)=f(b),则ab等于(  )
A.1B.e-1C.eD.e2

分析 由已知得|lna-$\frac{1}{2}$|=|lnb-$\frac{1}{2}$|,由此能求出结果.

解答 解:∵函数f(x)=|lnx-$\frac{1}{2}$|,a≠b,f(a)=f(b),
∴|lna-$\frac{1}{2}$|=|lnb-$\frac{1}{2}$|,
∴lna-$\frac{1}{2}$=lnb-$\frac{1}{2}$或lna-$\frac{1}{2}$=$\frac{1}{2}-lnb$,
即lna=lnb或ln(ab)=1,
解得a=b(舍)或ab=e.
∴ab=e.
故选:C.

点评 本题考查两数乘积的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网