题目内容

4.(1)已知f(x)=1-2x,g(x)=x2+3,求f[g(x)]和g[f(x)];
(2)已知f(x)是一次函数,且满足f[f(x)]=4x-6,求函数f(x)的解析式.

分析 (1)据复合函数的性质带如化简即可.
(2)已知f(x)是一次函数,设f(x)=kx+b,利用带待定系数法求解.

解答 解:(1)已知f(x)=1-2x,g(x)=x2+3,
那么:f[g(x)]=1-2g(x)=1-2(x2+3)=-2x2-5.
g[f(x)]=f(x)2+3=(1-2x)2+3=4x2-4x+4
(2)∵f(x)是一次函数,设f(x)=kx+b,
∵f[f(x)]=4x-6,
∴kf(x)+b,=4x-6
即k(kx+b)+b=4x-6
由$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=-6}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=2}\\{b=-2}\end{array}\right.$或$\left\{\begin{array}{l}{k=-2}\\{b=6}\end{array}\right.$
故得函数f(x)的解析式为f(x)=2x+2或f(x)=-2x+6.

点评 本题考查了函数解析式的求法,利用了带待定系数法,属于基础题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网