题目内容
若等差数列{an}的前7项和S7=21,且a2=﹣1,则a6=( )
A.5 B.6 C.7 D.8
圆的圆心到直线的距离为1,则a=
(A) (B) (C) (D)2
平面过正方体ABCDA1B1C1D1的顶点A,//平面CB1D1,平面ABCD=m,平面ABB1 A1=n,则m,n所成角的正弦值为
(A) (B) (C) (D)
已知a、b是异面直线,M为空间一点,M∉a,M∉b.给出下列命题:
①存在一个平面α,使得b?α,a∥α;
②存在一个平面α,使得b?α,a⊥α;
③存在一条直线l,使得M∈l,l⊥a,l⊥b;
④存在一条直线l,使得M∈l,l与a、b都相交.
其中真命题的序号是 .(请将真命题的序号全部写上)
直线a、b是异面直线,α、β是平面,若a?α,b?β,α∩β=c,则下列说法正确的是( )
A.c至少与a、b中的一条相交
B.c至多与a、b中的一条相交
C.c与a、b都相交
D.c与a、b都不相交
如图,△ABC内接于圆O,分别取AB、AC的中点D、E,连接DE,直线DE交圆O在B点处的切线于G,交圆于H、F两点,若GD=4,DE=2,DF=4.
(Ⅰ) 求证:=;
(Ⅱ)求HD的长.
等比数列{an}的公比不为1,若a1=1,且对任意的n∈N*,都有an+1、an、an+2成等差数列,则{an}的前5项和S5= .
如图,在四棱锥中,平面,.
(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ)设点E为AB的中点,在棱PB上是否存在点F,使得平面?说明理由.
设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)证明当时,;
(Ⅲ)设,证明当时,.