题目内容
6.解下列关于x,y的方程组:(1)$\left\{\begin{array}{l}{2x+y-m+1=0}\\{3x+2y+2m=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+3y=k}\\{3x+4y=2k+6}\end{array}\right.$.
分析 (1)方程组整理后,利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)方程组整理得:$\left\{\begin{array}{l}{2x+y=m-1①}\\{3x+2y=-2m②}\end{array}\right.$,
①×2-②得:x=4m-2,
把x=4m-2代入①得:y=-7m+3,
则方程组的解为$\left\{\begin{array}{l}{x=4m-2}\\{y=-7m+3}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+3y=k①}\\{3x+4y=2k+6②}\end{array}\right.$,
①×4-②×3得:-x=-2k-18,即x=2k+18,
把x=2k+18代入①得:y=-k-6,
则方程组的解为$\left\{\begin{array}{l}{x=2k+18}\\{y=-k-6}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
17.已知二次函数y=ax2+bx+c的图象过(-1,3),(1,1)两点且它与y轴交点的纵坐标大于0且小于1,则a的取值范围是( )
| A. | 1<a<3 | B. | 1≤a≤3 | C. | 2≤a<3 | D. | 1<a<2 |