题目内容

下面五张卡片上分别写有数字:可以用它们组成许多不同的五位数,求所有这些五位数的平均数.
分析:0不能为首位数,当1在万位上时,2有4个位置可放,3有3个位置可放,其余为0,共有4×3=12个不同的数.
当首数为1时,在12个数中0,0,2,3在各个数位上都出现了3次,故12个数之和为:(1×12)×10000+(2×3+3×3)×1111=136665.
当首位为2或3时,各可以组成12个不同的数,用以上方法可求得和为253332和369999,
解答:解:(1×12)×10000+(2×3+3×3)×1111
=1解:(1×12)×10000+(2×3+3×3)×1111
=120000+16665,
=136665.
(2×12)×10000+(1×3+3×3)×1111,
=240000+13332,
=253332,
(3×12)×10000+(1×3+2×3)×1111,
=360000+9999,
=369999,
平均数为(136665+253332+369999)÷(12×3),
=759996÷36,
=21111.
答:组成的这些五位数的平均数是21111.
点评:此题考查了利用排列组合的解题方法分别求出以1为首位、以2为首位、以3为首位的五位数,并根据数的组成的特点,求出它们的和,即可解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网