题目内容

在17个银元中,有一个是假的,除比真银元稍轻而外,其外表与真银元无任何差别;用一架无砝码的天平至少称(  )次就可保证找出假银元.
分析:第一次称:两边各放8个,如果天平平衡,则没参与称的那个是假的;若天平不平衡,则轻的一边有假的,第二次称:把有假的8个银元分成3份:3+3+2;两侧各放三个,此时如果天平平衡,则假银元在未称的两个里面;如果天平不平衡,则假银元就在轻的一边.第三次称:1.在天平两侧放未称的两个银元,轻的为假的;2.取出轻的一侧3个银元,任选两个,分别置于天平两端,如果平衡,则剩余的一个为假的;如果不平衡,则轻的一侧为假的.所以,至少称3次就可保证找出假银元.
解答:解:把17分成(8+8+2)三组,第一次,从17个银元中称出含有假银元一组.
第二次,把8个银元分成(3+3+2)三组,从8个银元中称出含有假银元的一组.
第三次,把3个银元分成(2+1)两组,二选一则一次称出.
答:至少称3次就可以保证找出假银元.
故选B.
点评:解答此题关键在于:1、依据天平平衡原理.2、合理的分组和组合.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网