题目内容
有一个数,被3除余2,被4除余1,那么这个数除以12余
5
5
.分析:利用带余数的除法运算性质,将这个数看成A+B,A为可以被12整除的部分,B则为除以12的余数,得出A可以被3或4整除,再结合已知这个数除以3余2,除以4余1,得出B也相同,归纳出符合要求的只有5.
解答:解:将这个数看成A+B,A为可以被12整除的部分,B则为除以12的余数.
A可以被12整除,则也可以被3或4整除.
因为这个数“除以3余2,除以4余1”,
所以B也是“除以3余2,除以4余1”,
又因为B是大于等于1而小于等于11,在这个区间内,只有5是符合的.
故答案是:5.
A可以被12整除,则也可以被3或4整除.
因为这个数“除以3余2,除以4余1”,
所以B也是“除以3余2,除以4余1”,
又因为B是大于等于1而小于等于11,在这个区间内,只有5是符合的.
故答案是:5.
点评:此题主要考查了带余数的除法运算,假设出这个数为两部分构成,是本题的解答关键,然后分析得出符合要求的数据.
练习册系列答案
相关题目