题目内容
用长628cm的铁丝围成下列图形,______面积最大.
- A.三角形
- B.圆形
- C.正方形
- D.长方形
B
分析:本题可假设周长是多少,根据这四种几何图形的面积公式分别求得面积后进行比较即可.
解答:根据三角形面积推导公式可知,周长相等的情况下,三角形面积一定小于正方形和长方形;
由此再比较圆、正方形及长方形在周长相等的情况下,哪种图形面积最大;
假设周长是628厘米,则圆的半径是100厘米,面积是31400平方厘米,
和它周长相等的正方形的面积是:(628÷4)2=24649平方厘米,
和它周长相等的长方形的面积是:长方形一条长和宽的和是628÷2=314,设这个长方形的长、宽分别为a、b:
取一些数字(10,304),(50,264),(100,214)…,
可以发现长方形的长和宽越接近,面积就越大,当长和宽相等时,也就是变成正方形了,
所以这个长方形的面积一定小于正方形的面积.
所以在周长相等的情况下,面积:圆>正方形>长方形>三角形.
故选:B.
点评:在周长相等的情况下,在所有几何图形中,圆的面积最大.
分析:本题可假设周长是多少,根据这四种几何图形的面积公式分别求得面积后进行比较即可.
解答:根据三角形面积推导公式可知,周长相等的情况下,三角形面积一定小于正方形和长方形;
由此再比较圆、正方形及长方形在周长相等的情况下,哪种图形面积最大;
假设周长是628厘米,则圆的半径是100厘米,面积是31400平方厘米,
和它周长相等的正方形的面积是:(628÷4)2=24649平方厘米,
和它周长相等的长方形的面积是:长方形一条长和宽的和是628÷2=314,设这个长方形的长、宽分别为a、b:
取一些数字(10,304),(50,264),(100,214)…,
可以发现长方形的长和宽越接近,面积就越大,当长和宽相等时,也就是变成正方形了,
所以这个长方形的面积一定小于正方形的面积.
所以在周长相等的情况下,面积:圆>正方形>长方形>三角形.
故选:B.
点评:在周长相等的情况下,在所有几何图形中,圆的面积最大.
练习册系列答案
相关题目
用长628cm的铁丝围成下列图形,( )面积最大.
A、三角形 | B、圆形 | C、正方形 | D、长方形 |