【题目】如图,三棱柱
中,侧面
为菱形,
在侧面
上的投影恰为
的中点
,
为
的中点.
![]()
(Ⅰ)证明:
∥平面
;
(Ⅱ)若
,
在线段
上是否存在点
(
不与
,
重合)使得直线
与平面
成角的正弦值为
若存在,求出
的值;若不存在,说明理由.
【题目】某中学高三(3)班有学生50人,现调查该班学生每周平均体育锻炼时间的情况,得到如下频率分布直方图,其中数据的分组区间为:
,
,
,
,
,![]()
![]()
(1)从每周平均体育锻炼时间在
的学生中,随机抽取2人进行调查,求这2人的每周平均体育锻炼时间都超过2小时的概率;
(2)已知全班学生中有40%是女姓,其中恰有3个女生的每周平均体育锻炼时间不超过4小时,若每周平均体育锻炼时间超过4小时称为经常锻炼,问:有没有90%的把握说明,经常锻炼与否与性别有关?
附:![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |