【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:
,试估计该校学生每周平均体育运动时间超过4小时的概率.
![]()
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时.请完成每周平均体育运动时间与性别的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为该校学生的每周平均体育运动时间与性别有关?
男生 | 女生 | 合计 | |
每周平均体育运动时间不超过4小时 | |||
每周平均体育运动时间超过4小时 | |||
合计 | 300 |
附:
,其中
.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】“累计净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为
时对颗粒物的累计净化量(单位:克).根据国家标准,对空气净化器的累计净化量(CCM)有如下等级划分:
累计净化量(克) |
|
|
| 12以上 |
等级 |
|
|
|
|
已知某批空气净化器共
台,其累计净化量都分布在区间
内,为了解其质量,随机抽取了
台净化器作为样本进行估计,按照
,
,
,
,
均匀分组,其中累计净化量在
的所有数据有:
,
,
,
,
和
,并绘制了如下频率分布直方图.
![]()
(1)求
的值及频率分布直方图中
的值;
(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为
的空气净化器有多少台?
(3)从累计净化量在
的样本中随机抽取2台,求恰好有1台等级为
的概率.