【题目】假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
2 | 3 | 4 | 5 | 6 | |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知,y对x呈线性相关关系,试求:
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,求出y关于x的线性回归方程
=bx+
;
(Ⅲ)估计使用年限为10年时,维修费用约是多少?
(参考数据:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)
【题目】自驾游从
地到
地有甲乙两条线路,甲线路是
,乙线是
,其中
段、
段、
段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表1所示.经调查发现,堵车概率
在
上变化,
在
上变化.在不堵车的情况下.走线路甲需汽油费500元,走线路乙需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计
段平均堵车时间,调查了100名走甲线路的司机,得到表2数据.
CD段 | EF段 | GH段 | |||
堵车概率 |
|
|
| ||
平均堵车时间 (单位:小时) |
| 2 | 1 | ||
(表1) | |||||
堵车时间(单位:小时) | 频数 | ||||
| 8 | ||||
| 6 | ||||
| 38 | ||||
| 24 | ||||
| 24 | ||||
(表2) | |||||
(1)求
段平均堵车时间
的值.
(2)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率.
(3)在(2)的条件下,某4名司机中走甲线路的人数记为X,求X的数学期望。
【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(Ⅰ)画出散点图;
(Ⅱ)求回归直线方程;
(Ⅲ)试预测广告费支出为10万元时,销售额多大?