1.(08全国Ⅱ18)如右图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小
球a和b.a球质量为m,静置于地面;b球质量为3m,用手托往,高度为h,此时轻绳刚好拉紧.
从静止开始释放b后,a可能达到的最大高度为 ( )
A.h B.1.5h C.2h D.2.5h
答案 B
解析 b着地前,根据牛顿第二定律:
对于b:3mg-T=3ma ①
对于a:T-mg=ma ②
①、②式相加得:2mg=4ma,a=,v2=2ah
b着地后,a做竖直上抛运动,v2=2gh1
设最大高度为H,则H=h+h1
所以
11.(09·宁夏·36)两质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上,A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h。物块从静止滑下,然后双滑上劈B。求物块在B上能够达到的最大高度。
解析:设物块到达劈A的低端时,物块和A的的速度大小分别为和V,由机械能守恒和动量守恒得
①
②
设物块在劈B上达到的最大高度为,此时物块和B的共同速度
大小为,由机械能守恒和动量守恒得
③
④
联立①②③④式得
⑤
2008年高考题
10.(09·山东·24)如图所示,某货场而将质量为m1=100 kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶端无初速滑下,轨道半径R=1.8 m。地面上紧靠轨道次排放两声完全相同的木板A、B,长度均为l=2m,质量均为m2=100 kg,木板上表面与轨道末端相切。货物与木板间的动摩擦因数为1,木板与地面间的动摩擦因数=0.2。(最大静摩擦力与滑动摩擦力大小相等,取g=10 m/s2)
(1)求货物到达圆轨道末端时对轨道的压力。
(2)若货物滑上木板4时,木板不动,而滑上木板B时,木板B开始滑动,求1应满足的条件。
(3)若1=0。5,求货物滑到木板A末端时的速度和在木板A上运动的时间。
解析:(1)设货物滑到圆轨道末端是的速度为,对货物的下滑过程中根据机械能守恒定律得,①设货物在轨道末端所受支持力的大小为,根据牛顿第二定律得,②
联立以上两式代入数据得③
根据牛顿第三定律,货物到达圆轨道末端时对轨道的压力大小为3000N,方向竖直向下。
(2)若滑上木板A时,木板不动,由受力分析得④
若滑上木板B时,木板B开始滑动,由受力分析得⑤
联立④⑤式代入数据得⑥。
(3),由⑥式可知,货物在木板A上滑动时,木板不动。设货物在木板A上做减速运动时的加速度大小为,由牛顿第二定律得⑦
设货物滑到木板A末端是的速度为,由运动学公式得⑧
联立①⑦⑧式代入数据得⑨
设在木板A上运动的时间为t,由运动学公式得⑩
联立①⑦⑨⑩式代入数据得。
考点:机械能守恒定律、牛顿第二定律、运动学方程、受力分析
9.(09·全国卷Ⅰ·25)如图所示,倾角为θ的斜面上静止放置三个质量均为m的木箱,相邻两木箱的距离均为l。工人用沿斜面的力推最下面的木箱使之上滑,逐一与其它木箱碰撞。每次碰撞后木箱都粘在一起运动。整个过程中工人的推力不变,最后恰好能推着三个木箱匀速上滑。已知木箱与斜面间的动摩擦因数为μ,重力加速度为g.设碰撞时间极短,求
(1)工人的推力;
(2)三个木箱匀速运动的速度;
(3)在第一次碰撞中损失的机械能。
答案:(1);(2);(3)。
解析:(1)当匀速时,把三个物体看作一个整体受重力、推力F、摩擦力f和支持力.根据平衡的知识有
(2)第一个木箱与第二个木箱碰撞之前的速度为V1,加速度
根据运动学公式或动能定理有
,碰撞后的速度为V2根据动量守恒有,即碰撞后的速度为,然后一起去碰撞第三个木箱,设碰撞前的速度为V3
从V2到V3的加速度为,根据运动学公式有,得,跟第三个木箱碰撞根据动量守恒有,得就是匀速的速度.
设第一次碰撞中的能量损失为,根据能量守恒有,带入数据得。
8.(09·山东·22)图示为某探究活动小组设计的节能运动系统。斜面轨道倾角为30°,质量为M的木箱与轨道的动摩擦因数为。木箱在轨道端时,自动装货装置将质量为m的货物装入木箱,然后木箱载着货物沿轨道无初速滑下,与轻弹簧被压缩至最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端,再重复上述过程。下列选项正确的是 ( BC )
A.m=M
B.m=2M
C.木箱不与弹簧接触时,上滑的加速度大于下滑的加速度
D.在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能
解析:受力分析可知,下滑时加速度为,上滑时加速度为,所以C正确。设下滑的距离为l,根据能量守恒有,得m=2M。也可以根据除了重力、弹性力做功以外,还有其他力(非重力、弹性力)做的功之和等于系统机械能的变化量,B正确。在木箱与货物从顶端滑到最低点的过程中,减少的重力势能转化为弹簧的弹性势能和内能,所以D不正确。
考点:能量守恒定律,机械能守恒定律,牛顿第二定律,受力分析
提示:能量守恒定律的理解及应用。
7.(09·山东·18)2008年9月25日至28日我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。下列判断正确的是 ( BC )
A.飞船变轨前后的机械能相等
B.飞船在圆轨道上时航天员出舱前后都处于失重状态
C.飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度
D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
解析:飞船点火变轨,前后的机械能不守恒,所以A不正确。飞船在圆轨道上时万有引力来提供向心力,航天员出舱前后都处于失重状态,B正确。飞船在此圆轨道上运动的周期90分钟小于同步卫星运动的周期24小时,根据可知,飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度,C正确。飞船变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是只有万有引力来提供加速度,所以相等,D不正确。
考点:机械能守恒定律,完全失重,万有引力定律
提示:若物体除了重力、弹性力做功以外,还有其他力(非重力、弹性力)不做功,且其他力做功之和不为零,则机械能不守恒。
根据万有引力等于卫星做圆周运动的向心力可求卫星的速度、周期、动能、动量等状态量。由得,由得,由得,可求向心加速度。
6. (09·广东文科基础·58) 如图8所示,用一轻绳系一小球悬于O点。现将小球拉至水 平位置,然后释放,不计阻力。小球下落到最低点的过程中,下列表述正确的是 ( A )
A.小球的机械能守恒
B.小球所受的合力不变
C.小球的动能不断减小
D.小球的重力势能增加
5.(09·广东理科基础·9)物体在合外力作用下做直线运动的v一t图象如图所示。下列表述正确的是( A )
A.在0-1s内,合外力做正功
B.在0-2s内,合外力总是做负功
C.在1-2s内,合外力不做功
D.在0-3s内,合外力总是做正功
解析:根据物体的速度图象可知,物体0-1s内做匀加速合外力做正功,A正确;1-3s内做匀减速合外力做负功。根据动能定理0到3s内,1-2s内合外力做功为零。
4.(09·广东理科基础·8)游乐场中的一种滑梯如图所示。小朋友从轨道顶端由静止开始下滑,沿水平轨道滑动了一段距离后停下来,则 ( D )
A.下滑过程中支持力对小朋友做功
B.下滑过程中小朋友的重力势能增加
C.整个运动过程中小朋友的机械能守恒
D.在水平面滑动过程中摩擦力对小朋友做负功
解析:在滑动的过程中,人受三个力重力做正功,势能降低B错;支持力不做功,摩擦力做负功,所以机械能不守恒,AC皆错,D正确。
3.(09·江苏物理·9)如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑。弹簧开始时处于原长,运动过程中始终处在弹性限度内。在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有 ( BCD )
A.当A、B加速度相等时,系统的机械能最大
B.当A、B加速度相等时,A、B的速度差最大
C.当A、B的速度相等时,A的速度达到最大
D.当A、B的速度相等时,弹簧的弹性势能最大
解析:处理本题的关键是对物体进行受力分析和运动过程分析,使用图象处理则可以使问题大大简化。对A、B在水平方向受力分析如图,F1为弹簧的拉力;当加速度大小相同为a时,对A有,对B有,得,在整个过程中A的合力(加速度)一直减小而B的合力(加速度)一直增大,在达到共同加速度之前A的合力(加速度)一直大于B的合力(加速度),之后A的合力(加速度)一直小于B的合力(加速度)。两物体运动的v-t图象如图,tl时刻,两物体加速度相等,斜率相同,速度差最大,t2时刻两物体的速度相等,A速度达到最大值,两实线之间围成的面积有最大值即两物体的相对位移最大,弹簧被拉到最长;除重力和弹簧弹力外其它力对系统正功,系统机械能增加,tl时刻之后拉力依然做正功,即加速度相等时,系统机械能并非最大值。