2.半径为的半圆卷成一个圆锥,则它的体积为( )
A. B. C. D.
1.如果一个水平放置的图形的斜二测直观图是一个底面为,腰和上底均为的等腰梯形,那么原平面图形的面积是( )
A. B.
C. D.
17.宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。设每个星体的质量均为。
(1)试求第一种形式下,星体运动的线速度和周期。
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?
16.如图所示,A是地球的同步卫星.另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.
(1)求卫星B的运行周期.
(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,他们再一次相距最近?
答案 TB=2π t=
15.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律。天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见的暗星B构成。两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图所示。引力常量为G,由观测能够得到可见星A的速率v和运行周期T。
(1)可见星A所受暗星B的引力FA可等效为位于O点处质量为m′的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m′(用m1、m2表示);
(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式;
(3)恒星演化到末期,如果其质量大于太阳质量ms的2倍,它将有可能成为黑洞。若可见星A的速率v=2.7×105m/s,运行周期T=4.7π×104s,质量m1=6ms,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11N·m2/kg2,ms=2.0×1030kg)
答案 (1)(2)(3)暗星B有可能是黑洞。
14.我们的银河系的恒星中大约四分之一是双星。某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G。由此可求出S2的质量为( )
A. B. C. D.
13.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,如图2-10,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是
(A)卫星在轨道3上的速率大于在轨道1上的速率
(B)卫星在轨道3上的角速度小于在轨道1上的角速度
(C)卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度
(D)卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度
12.地球同步卫星到地心的距离r可由r3= 求出.已知式中a的单位是m,b的单位是s,c的单位是m/s2,则
(A)a是地球半径,b是地球自转的周期,c是地球表面处的重力加速度
(B) a是地球半径,b是同步卫星绕地心运动的周期,c是同步卫星的加速度
(C) a是赤道周长,b是地球自转周期,c是同步卫星的加速度
(D) a是地球半径,b是同步卫星绕地心运动的周期,c是地球表面处的重力加速度
11.可以发射一颗这样的人造地球卫星,使其圆轨道( )
A.与地球表面上某一纬度线(非赤道)是共面同心圆
B.与地球表面上某一经度线所决定的圆是共面同心圆
C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的
D.与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的
10.某人造地球卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变,每次测量中卫星的运动可近似看作圆周运动.某次测量卫星的轨道半径为r1,后来变为r2,r2<r<R1.以Ek1、Ek2表示卫星在这两个轨道上的动能,T1、T2表示卫星在这两个轨道上绕地运动的周期,则
A. Ek2<Ek1,T2>T1 B. Ek2>Ek1,T2<T1 C. Ek2<Ek1,T2<T1 D. Ek2>Ek1,T2>T1