摘要:26.如下图.已知四边形ABCD是平行四边形.∠BCD的平分线CF交边AB于F.∠ADC的平分线DG交边AB于G.
网址:http://m.1010jiajiao.com/timu_id_767858[举报]
(本小题满分12分)已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
1.(1)填空:菱形ABCD的边长是 ▲ 、面积是
▲ 、 高BE的长是 ▲ ;
2.(2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t = 4 秒时的情形,并求出k的值.
查看习题详情和答案>>
(本小题满分5分)某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14:9:6:1,评价结果为D等级的有2人,请你回答以下问题:
1. (1)共抽测了多少人?
2. (2)样本中B等级的频率是多少?
3.(3) 如果要绘制扇形统计图,A等级在扇形统计图中所占的圆心角是多少度?
4.(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?
查看习题详情和答案>>
(本小题满分7分)
(1)如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=300,求BC的长。(结果保留根号)
(2)如图,已知平行四边形ABCD中,点为边的中点, 延长相交于点.
求证:. 查看习题详情和答案>>
(1)如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=300,求BC的长。(结果保留根号)
(2)如图,已知平行四边形ABCD中,点为边的中点, 延长相交于点.
求证:. 查看习题详情和答案>>
(本小题满分5分)某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14:9:6:1,评价结果为D等级的有2人,请你回答以下问题:
【小题1】 (1)共抽测了多少人?
【小题2】 (2)样本中B等级的频率是多少?
【小题3】(3)如果要绘制扇形统计图,A等级在扇形统计图中所占的圆心角是多少度?
【小题4】(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中? 查看习题详情和答案>>
【小题1】 (1)共抽测了多少人?
【小题2】 (2)样本中B等级的频率是多少?
【小题3】(3)如果要绘制扇形统计图,A等级在扇形统计图中所占的圆心角是多少度?
【小题4】(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中? 查看习题详情和答案>>
(本小题满分8分)
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8)。
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C、D两点(点C在点
D的左侧),顶点为N,四边形MDNA的面积为S。若点A、点D同时以每秒1
个单位的速度沿水平方向分别向右、向左运动;与此同时,点M、点N同时以每
秒2个单位的速度沿竖直方向分别向下、向上运动,直到点A与点D重合为止。
求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值
范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不
能,请说明理由. 查看习题详情和答案>>
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8)。
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C、D两点(点C在点
D的左侧),顶点为N,四边形MDNA的面积为S。若点A、点D同时以每秒1
个单位的速度沿水平方向分别向右、向左运动;与此同时,点M、点N同时以每
秒2个单位的速度沿竖直方向分别向下、向上运动,直到点A与点D重合为止。
求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值
范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不
能,请说明理由. 查看习题详情和答案>>