摘要:18.在△ABC中.AB=AC=5..如果圆O的半径为.且经过点B.C.那么线段AO的长等于 .
网址:http://m.1010jiajiao.com/timu_id_741080[举报]
数学课上,老师出示了如下框中的题目,
小敏与同桌小聪讨论后,进行了如下解答:
(1 )特殊情况探索结论当点E为AB的中点时,如图1 ,确定线段AE与DB的大小关系,请你直接写出结论:AE( )DB (填“>”,“<”或“=”).
(2 )特例启发,解答题目解:题目中,AE与DB的大小关系是:AE( )DB (填“>”,“<“=”),理由如下:如图2,过点E作EF∥BC,交AC于点F。(请你完成以下解答过程)
(3 )拓展结论,设计新题
在等边三角形ABC中,点E 在直线AB上,点D 在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长。(请你直接写出结果)
(1 )特殊情况探索结论当点E为AB的中点时,如图1 ,确定线段AE与DB的大小关系,请你直接写出结论:AE( )DB (填“>”,“<”或“=”).
(2 )特例启发,解答题目解:题目中,AE与DB的大小关系是:AE( )DB (填“>”,“<“=”),理由如下:如图2,过点E作EF∥BC,交AC于点F。(请你完成以下解答过程)
(3 )拓展结论,设计新题
在等边三角形ABC中,点E 在直线AB上,点D 在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长。(请你直接写出结果)
数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”,小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE______DB(填“>”,“<”或“=”);
(2)特例启发,解答题目解:
题目中,AE与DB的大小关系是:AE_______DB(填“>”,“<”或“=”),理由如下:如图2,过点E作EF∥BC,交AC于点F。(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果)。
查看习题详情和答案>>
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE______DB(填“>”,“<”或“=”);
(2)特例启发,解答题目解:
题目中,AE与DB的大小关系是:AE_______DB(填“>”,“<”或“=”),理由如下:如图2,过点E作EF∥BC,交AC于点F。(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果)。
刘扬同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、 ②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘扬同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D 与点A重合).
(1)在△DEF沿AC方向移动的过程中,刘扬同学发现:F、C两点间的距离逐渐______。(填“不变”、“变大”或“变小”)
(2)刘扬同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.
(1)在△DEF沿AC方向移动的过程中,刘扬同学发现:F、C两点间的距离逐渐______。(填“不变”、“变大”或“变小”)
(2)刘扬同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.
阅读以下短文,然后解决下列问题:
如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”。如图(1)所示,矩形ABEF即为△ABC的“友好矩形”。显然,当△ABC是钝角三角形时,其“友好矩形”只有一个。
1.仿照以上叙述,说明什么是一个三角形的“友好平行四边形”
2.如图(2),若△ABC为直角三角形,且∠C=90°,在图(2)
中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;
3.若△ABC是锐角三角形,且BC>AC>AB,在图(3)中画出△ABC的所有“友好矩形”,指出其中周长最大的矩形。(标上字母)
查看习题详情和答案>>
阅读以下短文,然后解决下列问题:
如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”。如图(1)所示,矩形ABEF即为△ABC的“友好矩形”。显然,当△ABC是钝角三角形时,其“友好矩形”只有一个。
【小题1】仿照以上叙述,说明什么是一个三角形的“友好平行四边形”
【小题2】如图(2),若△ABC为直角三角形,且∠C=90°,在图(2)
中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;
【小题3】若△ABC是锐角三角形,且BC>AC>AB,在图(3)中画出△ABC的所有“友好矩形”,指出其中周长最大的矩形。(标上字母) 查看习题详情和答案>>
如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”。如图(1)所示,矩形ABEF即为△ABC的“友好矩形”。显然,当△ABC是钝角三角形时,其“友好矩形”只有一个。
【小题1】仿照以上叙述,说明什么是一个三角形的“友好平行四边形”
【小题2】如图(2),若△ABC为直角三角形,且∠C=90°,在图(2)
中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;
【小题3】若△ABC是锐角三角形,且BC>AC>AB,在图(3)中画出△ABC的所有“友好矩形”,指出其中周长最大的矩形。(标上字母) 查看习题详情和答案>>