摘要:(B题)如图.已知平行四边形及四边形外一直线.四个顶点到直线的距离分别为.
网址:http://m.1010jiajiao.com/timu_id_654160[举报]
如图,已知抛物线交轴于A、B两点,交轴于点C,抛物线的对称轴交轴于点E,点B的坐标为(,0).
【小题1】求抛物线的对称轴及点A的坐标
【小题2】在平面直角坐标系中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
【小题3】连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由. 查看习题详情和答案>>
【小题1】求抛物线的对称轴及点A的坐标
【小题2】在平面直角坐标系中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
【小题3】连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由. 查看习题详情和答案>>
如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
【小题1】求抛物线的解析式
【小题2】若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标
【小题3】P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由. 查看习题详情和答案>>
【小题1】求抛物线的解析式
【小题2】若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标
【小题3】P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由. 查看习题详情和答案>>
如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
【小题1】求抛物线的解析式
【小题2】若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标
【小题3】P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
问题(一):观察函数的图象,填空:当函数值y>0时,x的取值范围是______;当函数值y<0时,x的取值范围是______.
问题(二):已知二次函数y=(p-3)x2+(10-p2)x+q,当1<x<5时,函数值y为正,当x<1或x>5时,函数值y为负.
(Ⅰ)求二次函数的解析式;
(Ⅱ)设直线与二次函数的图象交于点A、B.
(1)求点A、B的坐标,并在给定的直角坐标系中画出直线及二次函数的图象;
(2)设平行于y轴的直线x=t、x=t+2分别交线段AB于点E、F,交二次函数的图象于点H、G(H、G不与A、B重合).
①求t的取值范围;
②是否能适当选择点E的位置,使四边形EFGH是平行四边形?如果能,求出此时点E的坐标;如果不能,请说明理由.
查看习题详情和答案>>
问题(一):观察函数的图象,填空:当函数值y>0时,x的取值范围是______;当函数值y<0时,x的取值范围是______.
问题(二):已知二次函数y=(p-3)x2+(10-p2)x+q,当1<x<5时,函数值y为正,当x<1或x>5时,函数值y为负.
(Ⅰ)求二次函数的解析式;
(Ⅱ)设直线与二次函数的图象交于点A、B.
(1)求点A、B的坐标,并在给定的直角坐标系中画出直线及二次函数的图象;
(2)设平行于y轴的直线x=t、x=t+2分别交线段AB于点E、F,交二次函数的图象于点H、G(H、G不与A、B重合).
①求t的取值范围;
②是否能适当选择点E的位置,使四边形EFGH是平行四边形?如果能,求出此时点E的坐标;如果不能,请说明理由.
查看习题详情和答案>>
问题(二):已知二次函数y=(p-3)x2+(10-p2)x+q,当1<x<5时,函数值y为正,当x<1或x>5时,函数值y为负.
(Ⅰ)求二次函数的解析式;
(Ⅱ)设直线与二次函数的图象交于点A、B.
(1)求点A、B的坐标,并在给定的直角坐标系中画出直线及二次函数的图象;
(2)设平行于y轴的直线x=t、x=t+2分别交线段AB于点E、F,交二次函数的图象于点H、G(H、G不与A、B重合).
①求t的取值范围;
②是否能适当选择点E的位置,使四边形EFGH是平行四边形?如果能,求出此时点E的坐标;如果不能,请说明理由.
查看习题详情和答案>>