摘要:例2.(1)作出极坐标方程ρcos(θ+)=2和ρcos(θ+)=2的曲线.并将它们与ρ=cosθ=2的曲线进行比较
网址:http://m.1010jiajiao.com/timu_id_569660[举报]
在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
+
=1在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:ρ2-4
ρcos(θ-
)+6=0.
(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围. 查看习题详情和答案>>
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2 |
4 |
y2 |
9 |
C、已知某圆的极坐标方程为:ρ2-4
2 |
π |
4 |
(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围. 查看习题详情和答案>>
本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
,向量
=
.
(I)求矩阵M的特征值λ1、λ2和特征向量
1和
;
(II)求M6
的值.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
)=2
.
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2≥
(a+b+c)2;
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知矩阵M=
|
ξ |
|
(I)求矩阵M的特征值λ1、λ2和特征向量
ξ |
ξ2 |
(II)求M6
ξ |
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
|
π |
4 |
2 |
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2≥
1 |
3 |
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.