网址:http://m.1010jiajiao.com/timu_id_560127[举报]
一、选择题:
1.C 2.D 3.D 4.C 5. B 6.C 7. C 8.C 9. A
1,3,5
二、填空:
13..y=54.8(1+x%)16 14.(0,) 15.或 16.
三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤。
17.解(1)
(2)
18.解:(1)当时.…………2分
作∥交于,连.
由⊥面,知⊥面.…………3分
当为中点时,为中点.
∵△为正三角形,
∴⊥,∴…………5分
∴⊥…………6分
(2)过作⊥于,连结,则⊥,
∴∠为二面角P―AC―B的平面角,,
…………8分
…………10分
……12分
19.解:(1)f(x)=-a2(x-)2+c+,……………(1分)
∵a≥,∴∈(0,1,………………………………………(2分)
∴x∈(0,1时,[f(x)]max=c+,……………………………(3分)
∵f(x)≤1,则[f(x)]max=c+≤1,即c≤,……………(5分)
∴对任意x∈[0,1],总有f(x)≤1成立时,可得c≤.……(6分)
(2)∵a≥,∴>0………………………(7分)
又抛物线开口向下,f(x)=0的两根在[0,内,…………(8分)
…………(11分)
所求实数c的取值范围为。
20.解:(1)当时,,不成等差数列。…(1分)
当时, ,
∴ , ∴,∴ …………(4分)
∴…………………….5分
(2)………………(6分)
……………………(7分)
………(8分)
≤ ,∴≤ ∴≥……………(10分)
又≤ ,
∴的最小值为……………….12分
21.解:(1)
令……………………2分
当是增函数
当是减函数……………………4分
……6分
(2)因为,所以,
……………………8分
所以的图象在上有公共点,等价于…………10分
解得…………………12分
22解:(1)由题意:∵|PA|=|PB|且|PB|+|PF|=r=8
∴|PA|+|PF|=8>|AF|
∴P点轨迹为以A、F为焦点的椭圆…………………………3分
设方程为
………………………5分
(2)假设存在满足题意的直线l,其斜率存在,设为k,设
已知椭圆P的中心O在坐标原点,焦点在x坐标轴上,且经过点,离心率为
(1)求椭圆P的方程:
(2)是否存在过点E(0,-4)的直线l交椭圆P于点R,T,且满足.
若存在,求直线l的方程;若不存在,请说明理由.
(1)求椭圆P的方程:(2)是否存在过点E(0,-4)的直线l交椭圆P于点R,T,且满足.若存在,求直线l的方程;若不存在,请说明理由.
(本小题满分12分)
(1)求椭圆P的方程;
(2)是否存在过点E(0,-4)的直线l交椭圆P于点R,T,且满足. 若存在, 求直线l的方程;若不存在,请说明理由.