网址:http://m.1010jiajiao.com/timu_id_542043[举报]
(本小题满分14分)
阅读下面一段文字:已知数列的首项,如果当时,,则易知通项,前项的和. 将此命题中的“等号”改为“大于号”,我们得到:数列的首项,如果当时,,那么,且. 这种从“等”到“不等”的类比很有趣。由此还可以思考:要证,可以先证,而要证,只需证(). 结合以上思想方法,完成下题:
已知函数,数列满足,,若数列的前项的和为,求证:.
要证,只需证,即需,即需证,即证35>11,因为35>11显然成立,所以原不等式成立。以上证明运用了
A.比较法 B.综合法 C.分析法 D.反证法