网址:http://m.1010jiajiao.com/timu_id_512313[举报]
第六部分 振动和波
第一讲 基本知识介绍
《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。
一、简谐运动
1、简谐运动定义:= -k ①
凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。
谐振子的加速度:= -
2、简谐运动的方程
回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x方向的投影),圆周运动的半径即为简谐运动的振幅A 。
依据:x = -mω2Acosθ= -mω2
对于一个给定的匀速圆周运动,m、ω是恒定不变的,可以令:
mω2 = k
这样,以上两式就符合了简谐运动的定义式①。所以,x方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——
位移方程: = Acos(ωt + φ) ②
速度方程: = -ωAsin(ωt +φ) ③
加速度方程:= -ω2A cos(ωt +φ) ④
相关名词:(ωt +φ)称相位,φ称初相。
运动学参量的相互关系:= -ω2
A =
tgφ= -
3、简谐运动的合成
a、同方向、同频率振动合成。两个振动x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得
A = ,φ= arctg
显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),合振幅A最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。
b、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t后,得一般形式的轨迹方程为
+-2cos(φ2-φ1) = sin2(φ2-φ1)
显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),有y = x ,轨迹为直线,合运动仍为简谐运动;
当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有+= 1 ,轨迹为椭圆,合运动不再是简谐运动;
当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。
c、同方向、同振幅、频率相近的振动合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合运动x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合运动是振动,但不是简谐运动,称为角频率为的“拍”现象。
4、简谐运动的周期
由②式得:ω= ,而圆周运动的角速度和简谐运动的角频率是一致的,所以
T = 2π ⑤
5、简谐运动的能量
一个做简谐运动的振子的能量由动能和势能构成,即
= mv2 + kx2 = kA2
注意:振子的势能是由(回复力系数)k和(相对平衡位置位移)x决定的一个抽象的概念,而不是具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。
6、阻尼振动、受迫振动和共振
和高考要求基本相同。
二、机械波
1、波的产生和传播
产生的过程和条件;传播的性质,相关参量(决定参量的物理因素)
2、机械波的描述
a、波动图象。和振动图象的联系
b、波动方程
如果一列简谐波沿x方向传播,振源的振动方程为y = Acos(ωt + φ),波的传播速度为v ,那么在离振源x处一个振动质点的振动方程便是
y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕
这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y(x)的正弦函数,在x-y坐标下可以描绘出一个瞬时波形。所以,称y = Acos〔ω(t - )+ φ〕为波动方程。
3、波的干涉
a、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。
b、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。
我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S1和S2表示两个波源,P表示空间任意一点。
当振源的振动方向相同时,令振源S1的振动方程为y1 = A1cosωt ,振源S1的振动方程为y2 = A2cosωt ,则在空间P点(距S1为r1 ,距S2为r2),两振源引起的分振动分别是
y1′= A1cos〔ω(t ? )〕
y2′= A2cos〔ω(t ? )〕
P点便出现两个频率相同、初相不同的振动叠加问题(φ1 = ,φ2 = ),且初相差Δφ= (r2 – r1)。根据前面已经做过的讨论,有
r2 ? r1 = kλ时(k = 0,±1,±2,…),P点振动加强,振幅为A1 + A2 ;
r2 ? r1 =(2k ? 1)时(k = 0,±1,±2,…),P点振动削弱,振幅为│A1-A2│。
4、波的反射、折射和衍射
知识点和高考要求相同。
5、多普勒效应
当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f和波相对介质的传播速度v是恒定不变的)——
a、只有接收者相对介质运动(如图3所示)
设接收者以速度v1正对静止的波源运动。
如果接收者静止在A点,他单位时间接收的波的个数为f ,
当他迎着波源运动时,设其在单位时间到达B点,则= v1 ,、
在从A运动到B的过程中,接收者事实上“提前”多接收到了n个波
n = = =
显然,在单位时间内,接收者接收到的总的波的数目为:f + n = f ,这就是接收者发现的频率f1 。即
f1 = f
显然,如果v1背离波源运动,只要将上式中的v1代入负值即可。如果v1的方向不是正对S ,只要将v1出正对的分量即可。
b、只有波源相对介质运动(如图4所示)
设波源以速度v2正对静止的接收者运动。
如果波源S不动,在单位时间内,接收者在A点应接收f个波,故S到A的距离:= fλ
在单位时间内,S运动至S′,即= v2 。由于波源的运动,事实造成了S到A的f个波被压缩在了S′到A的空间里,波长将变短,新的波长
λ′= = = =
而每个波在介质中的传播速度仍为v ,故“被压缩”的波(A接收到的波)的频率变为
f2 = = f
当v2背离接收者,或有一定夹角的讨论,类似a情形。
c、当接收者和波源均相对传播介质运动
当接收者正对波源以速度v1(相对介质速度)运动,波源也正对接收者以速度v2(相对介质速度)运动,我们的讨论可以在b情形的过程上延续…
f3 = f2 = f
关于速度方向改变的问题,讨论类似a情形。
6、声波
a、乐音和噪音
b、声音的三要素:音调、响度和音品
c、声音的共鸣
第二讲 重要模型与专题
一、简谐运动的证明与周期计算
物理情形:如图5所示,将一粗细均匀、两边开口的U型管固定,其中装有一定量的水银,汞柱总长为L 。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。
模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k就有了,求周期就是顺理成章的事。
本题中,可设汞柱两端偏离平衡位置的瞬时位移为x 、水银密度为ρ、U型管横截面积为S ,则次瞬时的回复力
ΣF = ρg2xS = x
由于L、m为固定值,可令: = k ,而且ΣF与x的方向相反,故汞柱做简谐运动。
周期T = 2π= 2π
答:汞柱的周期为2π 。
学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。
思路提示:找平衡位置(木板重心在两滚轮中央处)→ú力矩平衡和Σ?F6= 0结合求两处弹力→ú求摩擦力合力…
答案:木板运动周期为2π 。
巩固应用:如图7所示,三根长度均为L = 2.00m地质量均匀直杆,构成一正三角形框架ABC,C点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。
解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:
N = mg ①
再回到框架,其静止平衡必满足框架所受合力矩为零。以C点为转轴,形成力矩的只有松鼠的压力N、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:
MN = Mf
现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C点为x),上式即成:
N·x = f·Lsin60° ②
解①②两式可得:f = x ,且f的方向水平向左。
根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C在导轨上的投影点为参考点,x就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——
= -k
其中k = ,对于这个系统而言,k是固定不变的。
显然这就是简谐运动的定义式。
答案:松鼠做简谐运动。
评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π = 2π = 2.64s 。
二、典型的简谐运动
1、弹簧振子
物理情形:如图8所示,用弹性系数为k的轻质弹簧连着一个质量为m的小球,置于倾角为θ
查看习题详情和答案>>第三部分 运动学
第一讲 基本知识介绍
一. 基本概念
1. 质点
2. 参照物
3. 参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)
4.绝对运动,相对运动,牵连运动:v绝=v相+v牵
二.运动的描述
1.位置:r=r(t)
2.位移:Δr=r(t+Δt)-r(t)
3.速度:v=limΔt→0Δr/Δt.在大学教材中表述为:v=dr/dt, 表示r对t 求导数
5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是
三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。)
6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好
三.等加速运动
v(t)=v0+at r(t)=r0+v0t+1/2 at2
一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。此抛物线为在大炮上方h=v2/2g处,以v0平抛物体的轨迹。)
练习题:
一盏灯挂在离地板高l2,天花板下面l1处。灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。)
四.刚体的平动和定轴转动
1. 我们讲过的圆周运动是平动而不是转动
2. 角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt
3. 有限的角位移是标量,而极小的角位移是矢量
4. 同一刚体上两点的相对速度和相对加速度
两点的相对距离不变,相对运动轨迹为圆弧,VA=VB+VAB,在AB连线上
投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB
例:A,B,C三质点速度分别VA ,VB ,VC
求G的速度。
五.课后习题:
一只木筏离开河岸,初速度为V,方向垂直于岸边,航行路线如图。经过时间T木筏划到路线上标有符号处。河水速度恒定U用作图法找到在2T,3T,4T时刻木筏在航线上的确切位置。
五、处理问题的一般方法
(1)用微元法求解相关速度问题
例1:如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D,BC段水平,当以恒定水平速度v拉绳上的自由端时,A沿水平面前进,求当跨过B的两段绳子的夹角为α时,A的运动速度。
(vA=)
(2)抛体运动问题的一般处理方法
- 平抛运动
- 斜抛运动
- 常见的处理方法
(1)将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动
(2)将沿斜面和垂直于斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题
(3)将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解
例2:在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为V0,求以何角度掷球时,水平射程最远?最远射程为多少?
(α=、 x=)
第二讲 运动的合成与分解、相对运动
(一)知识点点拨
- 力的独立性原理:各分力作用互不影响,单独起作用。
- 运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律
- 力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等
- 运动的合成分解:矢量合成分解的规律方法适用
- 位移的合成分解 B.速度的合成分解 C.加速度的合成分解
参考系的转换:动参考系,静参考系
相对运动:动点相对于动参考系的运动
绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动
牵连运动:动参考系相对于静参考系的运动
(5)位移合成定理:SA对地=SA对B+SB对地
速度合成定理:V绝对=V相对+V牵连
加速度合成定理:a绝对=a相对+a牵连
(二)典型例题
(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21。角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。求解雨滴相对于地的运动。
提示:矢量关系入图
答案:83.7m/s
(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?
提示:V人对梯=n1/t1
V梯对地=n/t2
V人对地=n/t3
V人对地= V人对梯+ V梯对地
答案:n=t2t3n1/(t2-t3)t1
(3)某人驾船从河岸A处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min后到达正对岸下游120m的C处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min恰好到达正对岸的B处,求河的宽度。
提示:120=V水*600
D=V船*600
答案:200m
(4)一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?
提示:如图船航行
答案:1.58m/s
(三)同步练习
1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。问汽车两次速度之比为多少时,司机都是看见冰雹都是以竖直方向从车的正面玻璃上弹开?(冰雹相对地面是竖直下落的)
2、模型飞机以相对空气v=39km/h的速度绕一个边长2km的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?
3.图为从两列蒸汽机车上冒出的两股长幅气雾拖尾的照片(俯视)。两列车沿直轨道分别以速度v1=50km/h和v2=70km/h行驶,行驶方向如箭头所示,求风速。
4、细杆AB长L ,两端分别约束在x 、 y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果vA为已知,试求P点的x 、 y向分速度vPx和vPy对杆方位角θ的函数。
(四)同步练习提示与答案
1、提示:利用速度合成定理,作速度的矢量三角形。答案为:3。
2、提示:三角形各边的方向为飞机合速度的方向(而非机头的指向);
第二段和第三段大小相同。
参见右图,显然:
v2 = + u2 - 2v合ucos120°
可解出 v合 = 24km/h 。
答案:0.2hour(或12min.)。
3、提示:方法与练习一类似。答案为:3
4、提示:(1)写成参数方程后消参数θ。
(2)解法有讲究:以A端为参照, 则杆上各点只绕A转动。但鉴于杆子的实际运动情形如右图,应有v牵 = vAcosθ,v转 = vA,可知B端相对A的转动线速度为:v转 + vAsinθ= 。
P点的线速度必为 = v相
所以 vPx = v相cosθ+ vAx ,vPy = vAy - v相sinθ
答案:(1) + = 1 ,为椭圆;(2)vPx = avActgθ ,vPy =(1 - a)vA
查看习题详情和答案>>经火箭发射,“阿波罗11号”首先进入环绕地球的轨道,然后加速,脱离地球轨道后,惯性滑行,进入环绕月球的轨道,最后登月舱降落在月球(图1轨迹).
当宇航员在月球上完成工作后,再发动引擎进入环绕月球的轨道,然后加速,脱离月球轨道,进入地球轨道,最后降落于地球(图2轨迹).
结合登月航线展开了四个方面的讨论:①为什么飞船能围绕地球旋转②飞船在什么条件下能挣脱地球的束缚③飞船为什么能围绕月球旋转④在什么条件下可以挣脱月球的束缚
请回答:
(1)以上哪些问题你能回答?并作答.
(2)哪些问题还不能回答?
(3)你还有什么新问题?请提出(要求与物理知识相关).考试后查找资料了解更多知识.
经火箭发射,“阿波罗11号”首先进入环绕地球的轨道,然后加速,脱离地球轨道后,惯性滑行,进入环绕月球的轨道,最后登月舱降落在月球(图1轨迹).
当宇航员在月球上完成工作后,再发动引擎进入环绕月球的轨道,然后加速,脱离月球轨道,进入地球轨道,最后降落于地球(图2轨迹).
结合登月航线展开了四个方面的讨论:①为什么飞船能围绕地球旋转②飞船在什么条件下能挣脱地球的束缚③飞船为什么能围绕月球旋转④在什么条件下可以挣脱月球的束缚
请回答:
(1)以上哪些问题你能回答?并作答.
(2)哪些问题还不能回答?
(3)你还有什么新问题?请提出(要求与物理知识相关).考试后查找资料了解更多知识.