摘要:(理)已知A.B.C是直线l上三点.向量..满足:
网址:http://m.1010jiajiao.com/timu_id_510304[举报]
已知A、B为椭圆
+
=1的左右顶点,F为椭圆的右焦点,P是椭圆上异于A、B的任意一点,直线AP、BP分别交直线l:x=m(m>2)于M、N两点,l交x轴于C点.
(Ⅰ)当PF∥l时,求直线AM的方程;
(Ⅱ)是否存在实数m,使得以MN为直径的圆过点F,若存在,求出实数m的值;,若不存在,请说明理由;
(Ⅲ)对任意给定的m值,求△MFN面积的最小值.
查看习题详情和答案>>
x2 |
4 |
y2 |
3 |
(Ⅰ)当PF∥l时,求直线AM的方程;
(Ⅱ)是否存在实数m,使得以MN为直径的圆过点F,若存在,求出实数m的值;,若不存在,请说明理由;
(Ⅲ)对任意给定的m值,求△MFN面积的最小值.
(理)已知圆M:(x+
)2+y2=36,定点N(
,0),点P为圆M上的动点,点G在MP上,且满足|GP|=|GN|
(1)求点G的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
=
+
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
查看习题详情和答案>>
5 |
5 |
(1)求点G的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
OS |
OA |
OB |
已知A、B两点的坐标分别为A(-1,0)、B(1,0),动点M满足MA+MB=.
(1)求动点M的轨迹方程;
(2)若点C在(1)中的轨迹上,且满足△ABC为直角三角形,求点C的坐标;
(3)设经过B点的直线l与(1)中的轨迹交于P、Q两点,问是否存在这样的直线l使得△APQ为正三角形,若存在求出直线l的方程,若不存在说明理由.
查看习题详情和答案>>
(1)求动点M的轨迹方程;
(2)若点C在(1)中的轨迹上,且满足△ABC为直角三角形,求点C的坐标;
(3)设经过B点的直线l与(1)中的轨迹交于P、Q两点,问是否存在这样的直线l使得△APQ为正三角形,若存在求出直线l的方程,若不存在说明理由.
查看习题详情和答案>>