网址:http://m.1010jiajiao.com/timu_id_503712[举报]
一、选择题
C B B A B A A A DD C C
二、填空题
13. 14. ―4 15. 2880 16.①③
17.解,由题意知,在甲盒中放一球概率为,在乙盒放一球的概率为 ….3分
①当n=3时,的概率为 …6分
②时,有或
它的概率为 ….12分
18.解: (1)解:在中
2分
4分
6分
(2)=
12分
19. (法一)(1)证明:取中点,连接、.
∵△是等边三角形,∴⊥,
又平面⊥平面,
∴⊥平面,∴在平面内射影是,
∵=2,,,,
∴△∽△,∴.
又°,∴°,
∴°,∴⊥,
由三垂线定理知⊥ ……….(6分)
(2)取AP的中点E及PD的中点F,连ME、CF则CFEM为平行四边形,CF平面PAD所以ME平面PAD,所以平面MPA平面PAD所以二面角M―PA―D为900.(12分)
20.解:(1)
2分
-1
(x)
-
0
+
0
-
(x)
减
极小值0
增
极大值
减
6分
(2)
8分
12分
21.Ⅰ)由题知点的坐标分别为,,
于是直线的斜率为,
所以直线的方程为,即为.…………………4分
(Ⅱ)设两点的坐标分别为,
由得,
所以,.
于是.
点到直线的距离,
所以.
因为且,于是,
所以的面积范围是. …………………………………8分
(Ⅲ)由(Ⅱ)及,,得
,,
于是,().
所以.
所以为定值. ……………………………………………12分
22.解(Ⅰ)由得,
数列{an}的通项公式为 4分
(Ⅱ)
设 ①
②
①―②得
=
即数列的前n项和为 9分
(Ⅲ)解法1:不等式恒成立,
即对于一切的恒成立
设,当k>4时,由于对称轴,且而函数在是增函数,不等式恒成立
即当k<4时,不等式对于一切的恒成立 14分
解法2:bn=n(2n-1),不等式恒成立,即对于一切恒成立
而k>4
恒成立,故当k>4时,不等式对于一切的恒成立 (14分)
锐角三角形ABC内接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB |
B.选修4-2:矩阵与变换
曲线C1=x2+2y2=1在矩阵M=[
|
C.选修4-4:坐标系与参数方程
P为曲线C1:
|
|
D.选修4-5:不等式选讲
设n∈N*,求证:
|
|
|
n(2n-1) |
求证:AB2=BE•CD.
B.已知矩阵M
|
C.已知圆的极坐标方程为:ρ2-4
2 |
π |
4 |
(1)将圆的极坐标方程化为直角坐标方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1. 查看习题详情和答案>>
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
|
|
α |
α |
β |
C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
|
|
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3. 查看习题详情和答案>>
如图,直角△ABC中,∠B=90°,以BC为直径的⊙O交AC于点D,点E是AB的中点.
求证:DE是⊙O的切线.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值-1及其对应的一个特征向量为
|
C.选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρcos(θ-
π |
4 |
2 |
|
D.选修4-5:不等式选讲
已知a,b,c都是正数,且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.