网址:http://m.1010jiajiao.com/timu_id_480934[举报]
一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.
思路分析:因奇数项和与偶数项和不同,项数相同,可知其公比q≠1,故可直接套用求和公式,列方程组解决.
查看习题详情和答案>>已知是等差数列,其前n项和为Sn,是等比数列,且,.
(Ⅰ)求数列与的通项公式;
(Ⅱ)记,,证明().
【解析】(1)设等差数列的公差为d,等比数列的公比为q.
由,得,,.
由条件,得方程组,解得
所以,,.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:数学归纳法)
① 当n=1时,,,故等式成立.
② 假设当n=k时等式成立,即,则当n=k+1时,有:
即,因此n=k+1时等式也成立
由①和②,可知对任意,成立.
查看习题详情和答案>>
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.
【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1. 第二问中,,由第一问中知道,然后利用裂项求和得到Tn.
解: (Ⅰ) 设:{an}的公差为d,
因为解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因为……………8分
查看习题详情和答案>>
已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {}的前n项和为( )
| A. |
| B. |
| C. |
| D. |
|
考点: | 数列的求和;等差数列的性质. |
专题: | 等差数列与等比数列. |
分析: | 利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 {}的前n项和. |
解答: | 解:∵Sn=4n+=2n2+2n, ∴. ∴数列 {}的前n项和===. 故选A. |
点评: | 熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键. |
已知数列是首项为的等比数列,且满足.
(1) 求常数的值和数列的通项公式;
(2) 若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;
(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.
【解析】第一问中解:由得,,
又因为存在常数p使得数列为等比数列,
则即,所以p=1
故数列为首项是2,公比为2的等比数列,即.
此时也满足,则所求常数的值为1且
第二问中,解:由等比数列的性质得:
(i)当时,;
(ii) 当时,,
所以
第三问假设存在正整数n满足条件,则,
则(i)当时,
,
查看习题详情和答案>>