摘要:证明:∵C是底面圆周上异于A.B的任意一点.且AB是圆柱底面圆的直径.∴BC⊥AC, --2分∵AA1⊥平面ABC.BCÌ平面ABC.∴AA1⊥BC. --4分∵AA1∩AC=A.AA1Ì平面AA1 C.ACÌ平面AA1 C. ∴BC⊥平面AA1C. --6分 (2)解法1:设AC=x.在Rt△ABC中.
网址:http://m.1010jiajiao.com/timu_id_475496[举报]
如图所示,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点,AA1=AB=2.
(1)求证:BC⊥平面A1AC;
(2)求三棱锥A1-ABC的体积的最大值;
(3)当三棱锥A1-ABC的体积取到最大值时,求直线AB与平面A1BC所成角的正弦值.
查看习题详情和答案>>
(1)求证:BC⊥平面A1AC;
(2)求三棱锥A1-ABC的体积的最大值;
(3)当三棱锥A1-ABC的体积取到最大值时,求直线AB与平面A1BC所成角的正弦值.
如图,AA1,BB1是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点,AA1=AB=4.
(1)求证:平面A1BC⊥平面A1AC;
(2)求三棱锥A1-ABC的体积V最大时二面角A-A1B-C的大小的余弦值.
查看习题详情和答案>>
(1)求证:平面A1BC⊥平面A1AC;
(2)求三棱锥A1-ABC的体积V最大时二面角A-A1B-C的大小的余弦值.
(本题满分8分)如图,A1A是圆柱的母线,AB是圆柱底面圆的直径, C是底面圆周上异于A,B的任意一点,A1A= AB=2.
(Ⅰ)求证: BC⊥平面A1AC;
(Ⅱ)求三棱锥A1-ABC的体积的最大值.
查看习题详情和答案>>