摘要:(3)由分别为的中点.得.且.
网址:http://m.1010jiajiao.com/timu_id_473819[举报]
中心在坐标原点,焦点在x轴上的椭圆的离心率为
,且经过点Q(1,
).若分别过椭圆的左右焦点F1,F2的动直线l1、l2相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率k1、k2、k3、k4满足k1+k2=k3+k4.
(1)求椭圆的方程;
(2)是否存在定点M、N,使得|PM|+|PN|为定值.若存在,求出M、N点坐标;若不存在,说明理由.
查看习题详情和答案>>
| ||
3 |
2
| ||
3 |
(1)求椭圆的方程;
(2)是否存在定点M、N,使得|PM|+|PN|为定值.若存在,求出M、N点坐标;若不存在,说明理由.
设圆过点P(0,2), 且在轴上截得的弦RG的长为4.
(1)求圆心的轨迹E的方程;
(2)过点(0,1),作轨迹的两条互相垂直的弦、,设、 的中点分别为、,试判断直线是否过定点?并说明理由.
查看习题详情和答案>>中心在坐标原点,焦点在轴上的椭圆的离心率为,且经过点。若分别过椭圆的左右焦点、的动直线、相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率、、、满足.
(1)求椭圆的方程;
(2)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标;若不存在,说明理由.
查看习题详情和答案>>