摘要:在中..故.
网址:http://m.1010jiajiao.com/timu_id_473815[举报]
在中,是三角形的三内角,是三内角对应的三边,已知成等差数列,成等比数列
(Ⅰ)求角的大小;
(Ⅱ)若,求的值.
【解析】第一问中利用依题意且,故
第二问中,由题意又由余弦定理知
,得到,所以,从而得到结论。
(1)依题意且,故……………………6分
(2)由题意又由余弦定理知
…………………………9分
即 故
代入得
查看习题详情和答案>>
在中,已知 ,面积,
(1)求的三边的长;
(2)设是(含边界)内的一点,到三边的距离分别是
①写出所满足的等量关系;
②利用线性规划相关知识求出的取值范围.
【解析】第一问中利用设中角所对边分别为
由得
又由得即
又由得即
又 又得
即的三边长
第二问中,①得
故
②
令依题意有
作图,然后结合区域得到最值。
查看习题详情和答案>>
在交通拥挤及事故多发地段,交警要求在此地段内的安全车距d是车速v的平方与车身长S(本题中假设S为常量)乘积的正比例函数关系.已知当车速为50千米/小时,安全车距恰为车身长.为使此地段的车流量Q=
最大,则车速v=
查看习题详情和答案>>
1000v | d+S |
50
50
.